Ян Шнейберг - История выдающихся открытий и изобретений (электротехника, электроэнергетика, радиоэлектроника)
- Название:История выдающихся открытий и изобретений (электротехника, электроэнергетика, радиоэлектроника)
- Автор:
- Жанр:
- Издательство:Издательский дом МЭИ
- Год:2009
- ISBN:978-5-383-00328-2
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Ян Шнейберг - История выдающихся открытий и изобретений (электротехника, электроэнергетика, радиоэлектроника) краткое содержание
Книга посвящена истории выдающихся открытий и изобретений в области электротехники, электроэнергетики и радиоэлектроники. Наиболее подробно изложена история электротехники – от первых наблюдений электрических и магнитных явлений еще до нашей эры до создания устройств, машин и приборов современного типа. Более кратко рассмотрено зарождение радиоэлектроники – от открытия термоэлектронной эмиссии до создания первых радиоприемников, радиоламп и зарождения техники СВЧ.
История выдающихся открытий и изобретений (электротехника, электроэнергетика, радиоэлектроника) - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Георг Вильгельм Рихман пожертвовал собой во имя науки, «научая других своим примером».
Бенджамин Франклин (1706-1790) – сын бедного бостонского мыловара, был пятнадцатым ребенком в семье. Но именно ему было суждено принести заслуженную славу всей династии Франклинов. Он рано начал трудовую жизнь, старался много читать и успешно занимался самообразованием. После долгих лет лишений он стал одним из образованнейших людей и крупным общественным деятелем, генерал-почтмейстером американских колоний, основателем Пенсильванского университета, активным борцом за независимость и создателем государства Соединенных Штатов Америки.
С большим увлечением он занялся изучением электрических явлений и сделал большой вклад в американскую и мировую науку.
В своем труде «Опыты и наблюдения над электричеством» (1747) он излагает разработанную им «унитарную» теорию электричества и опыты, доказавшие электрическую природу молнии.
В 1752 г. в Филадельфии он впервые произвел знаменитый опыт с воздушным змеем, которого он запускал при приближении грозовых туч. К крестовине змея он прикрепил заостренную проволоку, а к концу бечевки привязал ключ и шелковую ленту, которую держал рукой. «Как только, – писал Франклин, – грозовая туча окажется над змеем, заостренная проволока станет извлекать из нее электрический огонь, и змей вместе с бечевкой наэлектризуется. А когда дождь смочит змей вместе с бечевкой, сделав их тем самым способными свободно проводить электрический огонь, Вы увидите, как он обильно стекает с ключа при приближении Вашего пальца». Затем от ключа он зарядил лейденскую банку и произвел ряд опытов, убедительно доказавших полнейшее сходство электричества и молнии.
Французский священник Далибар, живший близ Парижа, прочитав книгу Франклина, в которой высказывалась мысль, что молния – есть электрический разряд, решил проверить на практике это утверждение. И в мае 1752 г., еще не зная об опыте Франклина со змеем, он продемонстрировал в своем саду толпе прихожан, как во время грозы, держа железный шест за бутылку, укрепленную на его конце, «получил из шеста несколько длинных голубых искр». А когда один из разрядов попал ему в руку, то он ощутил впечатление «удара кнутом».
Сообщая о своих опытах в Парижскую академию наук, Далибар писал: «Материя грома неоспоримо та же, что и электричество. Идея, высказанная Франклином, перестает быть загадкой и сделалась достоверным фактом».
Еще в 1747 г. Франклин впервые указывает свойство металлических остриев собирать электричество, а в 1749 г. он сооружает первый громоотвод. Внедрение громоотводов в быт больших городов пробивало себе дорогу с большим трудом главным образом из-за религиозных опасений. Сохранилось свидетельство о том, как в 1783 г. один из французов установил на своем доме громоотвод, чем вызвал волнение жителей города. Между властями и домовладельцем состоялся судебный процесс, который получил большую огласку и положил начало карьере блестящего адвоката, ставшего известным всей Франции. Имя адвоката было Робеспьер.
Постепенно громоотводы стали широко применяться. Первый в Европе громоотвод был водружен в 1760 г. на Эдистон- ском маяке. Несколько типов молниеотводов были созданы известным чешским естествоиспытателем П. Дивишем (1698- 1765). Ранее мы уже упоминали об оригинальных молниеотводах, предлагавшихся М.В. Ломоносовым. Первый громоотвод в России был установлен в 1772 г. на колокольне Петропавловского собора.
ГЛАВА 5 Открытие электромагнетизма и создание разнообразных электрических машин, ознаменовавших начало электрификации
В июне 1820 г. в Копенгагене была издана на латинском языке небольшая брошюра профессора Копенгагенского университета Ханса Кристиана Эрстеда с необычным названием: «Опыты, относящиеся к действию электрического конфликта на магнитную стрелку». Открытие Эрстеда не только обессмертило имя ученого, но явилось эпохальным событием в истории электромагнетизма. Как выразился один из ученых, электромагнетизм привлекал к себе не только железо, но и мысли европейских физиков.
Эрстед сделал свое открытие в декабре 1819 г. во время опытов на студенческой лекции: если расположить магнитную стрелку над проводом или под ним и пропустить электрический ток, то северный полюс стрелки повернется или к западу или к востоку. Эрстед подчеркнул, что речь идет не о притяжении или отталкивании, наблюдавшихся ранее в опытах с электричеством, а о вращении стрелки, вызываемом «вихрем» магнитных сил, возникающем вокруг проводника. В то время еще не было известно понятие «направление» тока и Эрстед считал, что положительное и отрицательное электричество, сталкиваясь в проводнике, образуют «конфликт», вызывающий «вихрь» магнитного поля.
В наши дни любой школьник может воспроизвести опыт Эрстеда и продемонстрировать «вихрь электрического конфликта», насыпав на плотный лист бумаги железные опилки, а сквозь центр листа, пропустив провод с электрическим током. Открытие Эрстеда спустя несколько месяцев привело к изобретению индикатора электрического тока: немецкий физик И. Швейггер (1779-1857) предложил использовать отклонение магнитной стрелки электрическим током, создав новый электроизмерительный прибор – «мультипликатор» (1820), представлявший собой магнитную стрелку, помещенную внутри рамки, состоящей из нескольких витков проволоки (рис. 5.1).

Рис. 5.1. Мультипликатор Швейггера
Необычайно «урожайным» в истории электромагнетизма был 1820 г. Выдающиеся открытия следовали одно за другим. В сентябре 1820 г. французский физик, позднее академик, Д.Ф. Араго (1786-1853) обнаруживает намагничивание проводника протекающим по нему током: если медная проволока, соединенная с полюсами вольтова столба, погружалась в железные опилки, то последние равномерно к ней «прилипали», а при выключении тока опилки «отставали». При замене медной проволоки железной она намагничивалась, а кусочек стали при таком намагничивании становился постоянным магнитом. По совету Ампера Араго заменил прямолинейную проволоку спиралью, при этом намагничивание иголки, помещенной внутри спирали, заметно усилилось. Так был создан «соленоид». Опыты Араго наглядно доказали электрическую природу магнетизма и возможность намагничивания стали электрическим током.
Наиболее выдающийся вклад в начальное исследование явлений электромагнетизма внес один из крупнейших французских ученых Андре Мари Ампер (1775-1836), заложивший основы электродинамики. Ампер от природы был необыкновенно одаренным человеком. В истории науки не известен случай, чтобы 13-летний мальчик представил в Лионскую академию наук литературы и искусства свою первую математическую работу, в которой высказал серьезные замечания по поводу одного из трудов всемирно известного математика Л. Эйлера. С помощью отца – одного из образованнейших людей своего времени, сотрудников Лионского лицея и главным образом путем неустанного самообразования, к 18 годам познания Ампера в области математики, физики, механики вполне соответствовали курсу университетского образования. В то время как его сверстники еще не перестали играть в детские игры, он все глубже познавал естественные науки.
Читать дальшеИнтервал:
Закладка: