В. Арутюнов - Нефть XXI. Мифы и реальность альтернативной энергетики
- Название:Нефть XXI. Мифы и реальность альтернативной энергетики
- Автор:
- Жанр:
- Издательство:ТД Алгоритм
- Год:2016
- Город:Москва
- ISBN:978-5-906861-06-1
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
В. Арутюнов - Нефть XXI. Мифы и реальность альтернативной энергетики краткое содержание
Ни одна из областей науки, пожалуй, не связана с российской экономикой в такой мере, как поиск альтернативных источников энергии. Конечно, человечество не может вечно рассчитывать на ископаемое углеводородное топливо, но как долго это будет продолжаться, когда закончится «углеводородная цивилизация» и что придет ей на смену – в этих вопросах мнения общественности и ученых сильно расходятся. В книге, предложенной вашему вниманию, доктор химических наук Арутюнов В.С. анализирует как разработки, так и оптимистические прогнозы энтузиастов альтернативной энергетики и показывает реальные контуры ее среднесрочных перспектив.
Можно ли уповать на такие источники энергии, как биотопливо, солнце, ветер и пр.? Что реально ограничивает объем производимого на Земле биотоплива и почему опасно и недопустимо его производство, например, за счет стимулирования роста зеленой массы быстро размножающихся водорослей в открытых водоемах и морских акваториях? Помимо ответов на эти вопросы, особое внимание автор уделяет происходящим в традиционной энергетике фактически революционным изменениям.
Нефть XXI. Мифы и реальность альтернативной энергетики - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:

Рис. 27. Схема добычи сланцевого газа методом гидроразрыва пласта
После гидроразрыва и выхода закачанной воды эффективная эксплуатация скважины может продолжаться в течение нескольких лет, хотя уже в течение первого года дебит скважины падает почти вдвое. В целом экономически эффективная эксплуатация скважины сланцевого газа продолжается всего несколько лет, что в разы меньше, чем в случае традиционного газа, добыча которого обычно ведется из ловушек, заполненных хорошо проницаемыми для газа породами, перекрытыми сверху газонепроницаемыми породами, и может продолжаться несколько десятилетий. Однако если обнаружение больших ловушек с традиционным газом, куда он диффундировал в течение миллионов лет из слабопроницаемых материнских пород, большая геологическая удача, то добыча сланцевого газа ведется по площадям путем последовательного бурения скважин через определенное расстояние. То есть добыча сланцевого газа может планомерно вестись на огромных территориях, расположенных над зонами с газосодержащими сланцевыми породами.
Тем не менее, сама технология добыча сланцевого газа, на разработку которой американские компании затратили пару десятков лет и миллиарды долларов, остается крайне сложной и дорогостоящей. Сейчас стоимость подготовки одной скважины к эксплуатации оценивается примерно в 5 млн долл. и продолжает постепенно снижаться, что позволяет американским добывающим компаниям поставлять газ на внутренний рынок по беспрецедентно низкой цене порядка 120 долл./1000 м 3. Это примерно в два-три раза ниже, чем цена газа в Европе и Японии.
О сложности технологии добычи сланцевого газа свидетельствует рис. 28, демонстрирующий обилие сложнейшей техники, привлекаемой для осуществления гидроразрыва пласта. Пока только американские компании владеют этой технологией, оставаясь в этой области монополистами.

Рис. 28. Подготовка техники к гидроразрыву пласта
2.4.2. Газовые гидраты – главный мировой резерв углеводородного топлива
Важное значение для формирования в земной коре ресурсов природного газа имеет свойство метана и других газообразных углеводородов при высоком давлении и пониженной температуре образовывать с водой газовые гидраты – твердые кристаллические соединения с общей формулой C nH 2n+2.mH 2O, которые при высоких давлениях существуют и при положительных температурах. По структуре газовые гидраты – это соединения включения (клатраты), образующиеся при внедрении молекул газа в пустоты кристаллических структур, составленных из молекул воды. Существуют два типа решетки гидратов: структура I, построенная из 46 молекул воды и имеющая 8 полостей, и структура II – 136 молекул воды, 16 малых полостей и 8 больших (рис. 29). Молекулы газа-гидратообразователя находятся в полостях решетки, которая может существовать только при наличии этих молекул (Бухгалтер, 1986).

Рис. 29. Полости в структурах газовых гидратов типа I (8М·46Н 2О, где М – СН 4, С 2Н 6, СО 2, H 2S, N 2) и типа II (8М·136Н 2О, где М – С 3Н 8, i-С 4Н 10); модель каркаса из молекул воды с находящейся внутри молекулой метана
Метан, этан, углекислый газ, сероводород и азот образуют гидраты структуры I, при которой формула полностью насыщенного газом гидрата 8M.46H 2O, где М – молекула гидратообразователя. Пропан и изобутан образуют гидраты структуры II с идеальной формулой 8M.136H 2O. Углеводороды с размерами молекул, большими, чем у изобутана, гидратов не образуют, так как уже не помещаются в полость, образуемую молекулами воды. Один объем воды при образовании гидрата связывает от 70 до 210 объемов газа, при этом удельный объем воды возрастает на 26–32 %. При образовании гидрата метана один объем воды связывает 207 объемов метана. А при разложении 1 м 3гидрата метана при нормальных условиях выделяется 164,6 м 3газа. При этом объем, занимаемый газом в гидрате, не превышает 20 %. Таким образом, в гидратном состоянии 164,6 м 3газа занимают объем всего 0,2 м 3(Макогон, 2001).
Внешне гидраты метана выглядят как лед или плотный снег, а при разложении (таянии) выделяют воду и метан, который можно поджечь (рис. 30). В природных условиях они широко распространены и образуют крупные залежи метанового газа. Например, на океанском дне даже при температуре +10°С уже на глубине 700 м давление достаточно для образования газовых гидратов. Мировые ресурсы газа в газогидратных залежах, сосредоточенных на материках, определяются величиной около 10 14м 3. А ресурсы газа, сосредоточенные в гидратном состоянии в акватории Мирового океана, в пределах шельфа и материкового склона – в 1,5 10 16м 3(Макогон, 1985), хотя имеются и более высокие оценки. Энергия, высвобождающаяся при разложении газогидратных залежей, столь велика, что этот процесс может инициировать тектономагматические процессы в литосфере Земли.

Рис. 30. Тающий кусок газового гидрата с горящим пламенем выделяющегося метана
Целый ряд закономерностей в распространении скоплений газовых гидратов, а также изотопно-геохимический облик газогидратных газов и вод свидетельствует о глубинном генезисе углеводородных газов, вошедших в состав газогидратов. Только в случае признания ведущей роли глубинных углеводородных и углеводородно-водных флюидов в формировании скоплений газогидратов главные геологические закономерности их распространения получают непротиворечивое объяснение. Водород и углерод являются основными химическими элементами, поднимающимися из земных глубин к поверхности в процессе постоянно идущей дегазации планеты. Водород диффундирует сквозь толщу земных пород в атомарном и молекулярном виде, а углерод – в химически связанном виде, в составе оксидов углерода СО и СО 2. При температуре ниже 600°С эти газы вступают в реакцию, образуя воду и метан (СО + 3Н 2→ Н 2О + СН 4). Вода входит в кристаллическую решетку гидросиликатов, а метан накапливается в виде газовых включений, в т. ч. газовых гидратов.
Мощнейшие скопления газовых гидратов приурочены в основном к краевым частям океанического дна, где продолжается океанообразование и где в современную нам эпоху происходит массовое поступление глубинного метана. Большая часть газовых гидратов обнаружена на дне океанов в молодых отложениях – метан продолжает поступать в гигантских объемах. Той же причиной обусловлено образование нефти и газа на континентах. В геологические эпохи мезозое и кайнозое сформировались осадочные бассейны, ставшие резервуарами углеводородов, где расположено большинство известных месторождений нефти и газа. Разница лишь в том, что на континентах возникшая по той же причине и в тот же отрезок времени, что и океаны, впадина заполнялась осадками, в которых и накапливался метан, впоследствии химическим и биогенным путями преобразованный в нефть и углеводородные газы. Формирование различных типов залежей газовых гидратов схематически представлено на рис. 31.
Читать дальшеИнтервал:
Закладка: