Владимир Рюмин - Занимательная электротехника на дому
- Название:Занимательная электротехника на дому
- Автор:
- Жанр:
- Издательство:Центрполиграф
- Год:2016
- Город:Москва
- ISBN:978-5-9524-5184-1
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Владимир Рюмин - Занимательная электротехника на дому краткое содержание
Владимир Владимирович Рюмин получил широкую известность как популяризатор науки и техники. Будучи прогрессивным педагогом-новатором, разрабатывал собственные оригинальные методики преподавания, ставил необычные опыты, следил за новостями из мира техники и делился ими с учениками. Начав заниматься преподаванием, он издал много учебных пособий по химии, минералогии, технологии и электротехнике, серию брошюр по технологии производств и по прикладной технологии…
Окончив преподавательскую деятельность, Владимир Владимирович сосредоточился на популяризации науки. Сегодня мы с удовольствием представляем книгу «Занимательная электротехника на дому». И хотя с момента ее написания прошло почти сто лет, основы электротехники с тех пор не изменились, опыты до сих пор актуальны и помогут понять принципы работы современных электроприборов, которыми мы не задумываясь пользуемся каждый день. В книге описано большое количество интересных, а также полезных устройств, которые можно сделать в домашних условиях своими руками. Издание рассчитано на самый широкий круг читателей.
Занимательная электротехника на дому - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Разъединив конец трубки b от аппарата, выделяющего угольный газ, быстро вводят в шарик кусочек едкого калия и тотчас заплавляют наглухо кончик трубки b (рис. 35, V). Через сутки, когда едкий калий поглотит углекислый газ, вплавляют второй электрод d и, заплавив узенькую трубочку между шариком с и главной трубкой, отделяют шарик отламыванием (рис. 35, VI).
Можно также, размягчая в одном месте стенку трубки и осторожно вдувая в нее воздух, получить в изготовляемой трубке, как и в предыдущем случае, шарик и, дав трубке остыть, наполнить его гашеной известью.
Накаливая затем шарик с известью, выделяют из последней пары воды, вытесняющие из трубки воздух, после чего в трубку вплавляют электроды и заплавляют ее с обоих концов, не отделяя шарика с.
Охлаждаясь, известь вновь соединяется с водой, и в трубке давление понижается. После этого заплавляют узенькую трубочку между главной трубкой и шариком, оттягивают ее и обламывают шарик.

Рис. 35
Пользуясь тем, что упругость водяного пара тем меньше, чем ниже его температура, можно достичь разрежения в трубке таким «физическим» путем. Для этого на конце трубки, предварительно заплавленной в пламени горелки и согнутой под прямым углом, выдувают шарик а (рис. 35, VII), а другой конец оттягивают в узенькую трубочку. Затем вплавляют в трубку электроды (как и в предыдущем случае, если можно, платиновые, а то хотя бы железные) с и d и дают трубке остыть. Потом снова, слегка нагрев всю трубку, оттянутый ее конец b погружают в воду. При нагревании воздух в трубке расширяется и часть его выходит наружу, а при остывании трубки на его место давлением наружного воздуха в нее вгоняется вода. Дав ей перелиться в шарик а, нагревают ее до кипения. Выделяющийся пар вытесняет воздух из трубки.
Когда почти вся вода, бывшая в шарике, испарена, другой лампой нагревают оттянутый кончик трубки b до плавления и, прекратив нагревание шарика а, окончательно заплавляют кончик b.
Дав прибору постепенно остыть, шарик а помещают в чашечку со льдом. Пар, наполнивший трубку, при этом частью конденсируется в шарике, упругость его падает до 1/ 165нормальной. Наполняя же чашечку искусственной охладительной смесью (азотно-аммониевая соль и снег в равных по весу количествах), удастся понизить температуру до 30°, а упругость пара внутри трубки до 1 /2500нормальной. При таких упругостях разряд, при соединении электродов трубки с и d с клеммами вторичной обмотки работающей спирали Румкорфа, дает весьма интересные световые явления внутри трубки.
Охлаждая шарик трубки до более или менее низкой температуры, получают и упругость внутри гейслеровой трубки тем меньшую, чем ниже температура охлаждения шарика, что дает возможность наблюдать картину светового разряда при разных степенях разрежения. Если же отогнутое вниз колено трубки сделать достаточно длинным, то, сильно охладив шарик и, следовательно, значительно разредив воздух в трубке, можно заплавить ее за электродом с и затем отделить от нее нижнюю часть с шариком.
Для того чтобы разредить воздух в трубке механическим путем, трубку снизу закрывают герметически пробкой а, проваренной в парафине с пропущенной сквозь нее медной проволокой b, расплющенной сверху в пуговку, а снизу, вне трубки, согнутой в крючок (рис. 35, VIII).
Ранее чем вставить в трубку эту пробку, через тот же конец вводят другую пробку с. Через нее пропускается более длинная медная проволока, припаянная к медному кружку, прилегающему к нижнему основанию пробки, а на другом конце согнутая в кольцо. Введя эту пробку неглубоко внутрь трубки, закрывают последнюю плотно второй пробкой и после этого вытягивают пробку с до верхнего края трубки, разрежая тем самым воздух в пространстве между пробками.
Пробка с также должна быть совершенно плотной, и сверх нее наливается тонкий слой вазелинового масла. На проволоке, проходящей через пробку с, делается в небольшом расстоянии от ее верхнего края колечко е. Когда оно вытянется выше верхнего края трубки, в нее вставляют стальной штифтик, чтобы внешним давлением пробка не вгонялась внутрь трубки.
При помощи проволок, проходящих сквозь пробки, трубка соединяется с электродами действующего источника тока. Трудно, конечно, в течение более или менее долгого времени сохранять внутри трубки пониженное давление.
С течением времени воздух проникает в зазоры между стеклом и пробкой, пробкой и проволоками – электродами, и свечение прекращается. Зато не трудно снова повторить описанную операцию и вновь разредить воздух в трубке.
При изготовлении гейслеровых трубок во всех случаях можно предварительно ввести внутрь их фосфоресцирующие вещества, некоторые из которых светятся не только во время разряда в трубке, но продолжают светиться и после того, как прекращен ток. Таковы, например, сернистые кальций и барий. Очень красиво ярко-зеленое свечение двойной фтористой ураново-аммониевой соли; менее эффектно, но все же весьма занимательно оранжевое сияние сернистого цинка, зеленое азотнокислого урана и других солей.
Загадочные лучи
Новые научные открытия, становясь достоянием широких масс, обычно возбуждают к себе тем больший интерес, чем они непонятнее, чем резче отступают от истин, ставших уже привычными.
Они заинтересовывают не только ученых и образованных людей, но и такие круги публики, которые обычно совершенно равнодушны к успехам естествознания.
Такой повышенный интерес вызвали в свое время говорящая машина – фонограф, передача речи по проводам – телефония, а в последние годы радио – передача музыки и речи. Но, пожалуй, ни одно из этих открытий и изобретений не взволновало так сильно общество, как открытие германским профессором Рентгеном загадочных Х-лучей, проникающих сквозь непрозрачные преграды.
Поначалу публика решила, что отныне нет закрытых помещений, что каждая комната может быть осмотрена, хотя бы все входы в нее были заперты, каждое заклеенное письмо прочтено, содержимое любого чемодана обнаружено, не раскрывая самого чемодана, и т. п.
Смешивая природу новых лучей, названных в честь ученого, их открывшего, лучами Рентгена, с лучами света, воспринимаемого нашим органом зрения, полагали, что достаточно направить поток таких лучей на стену дома, чтобы видеть все, что делается внутри его.
Вскоре убедились, что большинство этих предположений надо отнести к области фантазии, и интерес к новому открытию в широких кругах публики столь же быстро исчез, как и появился, но не исчез он, по счастью, среди ученых. Они продолжали изучать эти таинственные лучи и после почти 20 лет упорной работы над ними вполне выяснили их природу, условия возникновения и свойства. Их же практическое применение было разработано значительно раньше. Это такие же лучи, как и лучи видимого света, но с очень короткой длиной волны, еще более короткой, чем у так называемых химических ультрафиолетовых лучей, лежащих за фиолетовой частью спектра и также не ощущаемых глазом.
Читать дальшеИнтервал:
Закладка: