Мартин Форд - Архитекторы интеллекта. Вся правда об искусственном интеллекте от его создателей
- Название:Архитекторы интеллекта. Вся правда об искусственном интеллекте от его создателей
- Автор:
- Жанр:
- Издательство:Издательство Питер
- Год:2019
- Город:СПб.
- ISBN:978-5-4461-1254-8
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Мартин Форд - Архитекторы интеллекта. Вся правда об искусственном интеллекте от его создателей краткое содержание
Какие подходы и технологии считаются наиболее перспективными? Какие крупные открытия возможны в ближайшие годы? Можно ли создать по-настоящему мыслящую машину или ИИ, сравнимый с человеческим, и как скоро? Какие риски и угрозы связаны с ИИ и как их избежать? Вызовет ли ИИ хаос в экономике и на рынке труда? Смогут ли суперинтеллектуальные машины выйти из-под контроля человека и превратиться в реальную угрозу?
Разумеется, предсказать будущее невозможно. Тем не менее эксперты знают о текущем состоянии технологий, а также об инновациях ближайшего будущего больше, чем кто бы то ни было.
Вас ждут блестящие встречи с такими признанными авторитетами, как Р. Курцвейл, Д. Хассабис, Дж. Хинтон, Р. Брукс и многими другими. В формате PDF A4 сохранен издательский макет книги.
Архитекторы интеллекта. Вся правда об искусственном интеллекте от его создателей - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Р. К.: Вы совершенно правы. Согласно правилам, которые придумали мы с Митчем, тест занимает несколько часов, и даже этого может оказаться недостаточно. Машина должна убедить экзаменатора, что она – человек. Такую иллюзию вполне можно создать с помощью несложных уловок.
М. Ф.: Тест покажет, что машина обладает интеллектом, не найдя в ней сходство с человеком.
Р. К.: Киты и осьминоги проявляют интеллектуальное поведение, но никогда не смогут пройти тест Тьюринга. Китаец, который не говорит по-английски, тоже не пройдет. Невозможность пройти тест не указывает на отсутствие развитого интеллекта, но чтобы его пройти, нужно обладать развитым интеллектом.
М. Ф.: Вы верите в то, что комбинация глубокого обучения и вашего иерархического подхода позволяет двигаться в сторону сильного ИИ или для этого нужен какой-то сдвиг парадигмы?
Р. К.: Я думаю, что люди используют именно иерархический подход. Каждый из модулей способен обучаться, и в книге я подчеркиваю, что в человеческом мозге происходит не глубокое обучение, а какой-то эквивалент марковского процесса. При этом глубокое обучение результативно. В системах Google мы с его помощью создаем векторы, представляющие собой шаблоны для каждого модуля иерархии, а затем начинается сама иерархия, которая в парадигму глубокого обучения уже не вписывается. Я думаю, что для сильного ИИ этого достаточно. На мой взгляд, иерархический подход отражает процессы, которые протекают в мозге человека, и проекты по реверсивному воспроизведению мозга это подтверждают.
Существуют доказательства того, что мозг использует систему, основанную на правилах, а не ту, что предлагают коннекционисты. Именно поэтому люди способны четко отличать вещи друг от друга и логически мыслить. При этом коннекционистская система в определенных ситуациях настолько уверена в своих суждениях, что действует как система, основанная на правилах, и при этом справляется с исключениями и нюансами.
Обратное при этом неверно. Система, основанная на правилах, не может эмулировать коннекционистскую систему. Проект Cyc (читается «сайк») Дугласа Лената очень впечатляет, но, на мой взгляд, он страдает от ограничений системы, основанной на правилах. В какой-то момент неизбежно достигается предел сложности. То есть правила становятся настолько сложными, что при попытке исправить одну вещь ломаются три другие.
М. Ф.: Cyc – это проект, в котором люди вручную вводят логические правила?
Р. К.: Да. Точных цифр я не знаю, но количество правил там огромно. В одном из режимов можно распечатывать рассуждения, обосновывающие поведение. Обычно они занимают несколько страниц, и уследить за их ходом сложно. Это хороший проект, но человеческий интеллект формируется как-то по-другому. Вместо каскадов правил люди используют самоорганизующуюся иерархию.
Преимуществом коннекционистского подхода я считаю и то, что он прозрачен. Можно посмотреть на модули в иерархии и увидеть, на какие решения влияет каждый из них. А состоящие из 100 слоев нейронные сети действуют как большой «черный ящик». Понять ход происходящих внутри рассуждений крайне сложно, хотя некоторые пытались.
М. Ф.: В человеческом мозге с рождения присутствуют определенные структуры, например, позволяющие новорожденным распознавать лица.
Р. К.: У нас есть генераторы функций. Веретенообразная извилина умеет вычислять соотношения: длину носа или расстояние между глазами. Существует примерно дюжина простых функций, которые мы можем сгенерировать на основе изображения лица, а затем распознать то же самое лицо на новом изображении, даже если какие-то детали изменились. Другие функции аналогичным образом работают с аудиоинформацией, то есть вычисляют определенные отношения и распознают частичные обертоны. Затем эти функции поступают в коннекционистскую иерархическую систему.
М. Ф.: Расскажите, пожалуйста, о перспективах создания сильного ИИ или интеллекта уровня человека.
Р. К.: Это синонимы, но термин «сильный ИИ» мне не нравится. Разработки ИИ с самого начала ставили целью достижение человеческого уровня интеллекта. Но постепенно начали формироваться отдельные области, исчезла концентрация на сильном ИИ. Но я считаю, что, решая отдельные задачи, мы постепенно дойдем и до него.
Не стоит забывать и о разнице в уровне навыков при выполнении одной и той же задачи. Насколько хорошо люди играют в го? Как только компьютер достигает хотя бы нижнего уровня способностей человека, он очень быстро может превзойти способности чемпиона.
Компьютеры пока не могут хорошо работать с несколькими цепочками рассуждений, делая выводы из нескольких утверждений и одновременно применяя свои знания об окружающем мире. Например, в тесте на знание языка для третьего класса компьютер не понимал, что у мальчика грязные ботинки из-за ходьбы по лужам, и следы на полу рассердят его мать. ИИ не обладает тем опытом, который делает для нас многие вещи очевидными.
Сейчас в ряде языковых тестов компьютеры демонстрируют среднестатистический уровень понимания взрослого человека. И быстрого прогресса в этой области не будет, потому что сначала нужно решить более фундаментальные проблемы. Но даже достигнутый уровень впечатляет, потому что для понимания языка требуется и высокий интеллект, и умение распознавать переносные смыслы, и иерархическое мышление. Подводя итог, скажу, что да, используя коннекционистские подходы, мы делаем успехи.
Моя рабочая группа нацелена на прохождение теста Тьюринга. Научить компьютеры учитывать выводы и подтексты различных концепций, то есть вести несколько цепочек рассуждений одновременно – это первоочередная задача. Именно тут чат-боты обычно терпят неудачу. Если я скажу, что переживаю из-за школьных оценок дочери, ни один человек не спросит через три хода, есть ли у меня дети. А чат-боты задают такие вопросы. Но если мы научим их понимать все оттенки языка, виртуальные собеседники смогут извлекать все нужные сведения из доступных в интернете книг и документов. У нас уже есть идеи, как реализовать подобные вещи.
М. Ф.: Долгое время вы утверждали, что сильный ИИ будет создан к 2029 г. Вы до сих пор так считаете?
Р. К.: В книге The Age of Intelligent Machines («Эпоха мыслящих машин», 1989 г.) я писал о 2029 г. плюс-минус 10 лет. В 1999 г. я опубликовал книгу The Age of Spiritual Machines («Эпоха чувствующих машин»), в которой четче обозначил 2029 г. По этому поводу в Стэнфорде прошла конференция экспертов по ИИ. В основном все пришли к мнению, что на это потребуются сотни лет, а примерно четверть присутствовавших считали, что этого не произойдет никогда.
Читать дальшеИнтервал:
Закладка: