Мартин Форд - Архитекторы интеллекта. Вся правда об искусственном интеллекте от его создателей
- Название:Архитекторы интеллекта. Вся правда об искусственном интеллекте от его создателей
- Автор:
- Жанр:
- Издательство:Издательство Питер
- Год:2019
- Город:СПб.
- ISBN:978-5-4461-1254-8
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Мартин Форд - Архитекторы интеллекта. Вся правда об искусственном интеллекте от его создателей краткое содержание
Какие подходы и технологии считаются наиболее перспективными? Какие крупные открытия возможны в ближайшие годы? Можно ли создать по-настоящему мыслящую машину или ИИ, сравнимый с человеческим, и как скоро? Какие риски и угрозы связаны с ИИ и как их избежать? Вызовет ли ИИ хаос в экономике и на рынке труда? Смогут ли суперинтеллектуальные машины выйти из-под контроля человека и превратиться в реальную угрозу?
Разумеется, предсказать будущее невозможно. Тем не менее эксперты знают о текущем состоянии технологий, а также об инновациях ближайшего будущего больше, чем кто бы то ни было.
Вас ждут блестящие встречи с такими признанными авторитетами, как Р. Курцвейл, Д. Хассабис, Дж. Хинтон, Р. Брукс и многими другими. В формате PDF A4 сохранен издательский макет книги.
Архитекторы интеллекта. Вся правда об искусственном интеллекте от его создателей - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
М. Ф.: Вы говорите только о перепрофилировании или считаете, что нужно коренным образом менять всю систему образования?
Д. Р.: В XX в. грамотным считался человек, который умел читать, писать и знал арифметику. В XXI в. это определение нужно расширить, добавив навыки работы с компьютером. Если в школах начнут обучать созданию вещей с помощью программирования, возможности учеников вырастут.
Кроме того, нужно поменять отношение к обучению. Сегодня большинство сначала учится, а в какой-то момент начинает работать. Мне кажется, что с развитием технологий более правильным окажется параллельный подход. Человек всегда должен быть готовым к приобретению новых навыков и их применению в процессе обучения.
М. Ф.: В некоторых странах ИИ становится стратегическим направлением. Они принимают четкую промышленную политику, ориентированную на робототехнику и ИИ. В частности, активно инвестирует в эту область Китай. Не рискуем ли мы проиграть в этой гонке?
Д. Р.: Мне нравится то, что происходит в сфере ИИ по всему миру. Огромные инвестиции в эту сферу делают Китай, Канада, Франция, Великобритания и десятки других стран. Многие связывают с ИИ свое будущее, и я думаю, что США следует поступить так же. Нужно разглядеть потенциал, который несет ИИ, и увеличить поддержку и финансирование этой сферы.
Джеймс Маника
“Кто-то должен регулировать ИИ. Главное – не останавливать его использование, не закрывать ящик Пандоры и не откладывать применение новых технологий, пытаясь повернуть время вспять".

Cтарший партнер в MCKINSEY & Company и председатель MGI, член команды AIIndex.org, сотрудник DeepMind, научный сотрудник Initiative on the Digital Economy в MIT
Автор книг и статей Джеймс Маника принимает участие в организованной Стэнфордским университетом программе 100-летнего исследования ИИ. Член Совета Оксфордского института интернета, Совета по международным отношениям, Совета консультантов по цифровой экономике, Национального консультативного совета по инновациям, фонда Макартуров, фонда Хьюлетта и организации Markle Foundation. В 2012–2016 гг. занимал пост заместителя председателя Совета по глобальному развитию при Белом доме.
Мартин Форд: Как возник ваш интерес к робототехнике и ИИ?
Джеймс Маника: Наука всегда вдохновляла меня, отчасти потому, что мой отец был первым чернокожим из Родезии, получившим стипендию по программе Фулбрайта. Приехав в США в начале 1960-х гг., он посетил NASA и увидел с мыса Канаверал, как ракеты взлетают в небо. После возвращения отец много рассказывал о науке, космосе и технологиях. Я стал создавать модели самолетов и машин из всего, что попадалось под руку.
Когда я поступил в университет, Зимбабве уже была независимой. Я получил степень бакалавра в области электротехники с уклоном в математику и computer science. Именно тогда приглашенный исследователь из Университета Торонто привлек меня к проекту по нейронным сетям. Я узнал о методе обратного распространения Румельхарта и использовании сигмоид в качестве функций активации.
Я очень старался и в результате получил стипендию Родса для поступления в Оксфордский университет. Там я работал в Исследовательской группе по программированию под руководством Энтони Хоара – изобретателя алгоритма сортировки. Магистерскую диссертацию по математике я защищал на материале алгоритмов. От идеи стать космонавтом я отказался, но думал, что работа в сфере робототехники и ИИ приближает меня к науке о космосе.
Я попал в Исследовательскую группу по робототехнике в Оксфорде, где фактически велась работа над ИИ, но в то время этот термин воспринимался негативно. Был конец так называемой «зимы ИИ» после неоправданных ожиданий. Наша деятельность называлась как угодно – машинное восприятие, машинное обучение, робототехника или просто нейронные сети. Сейчас ситуация ровно противоположная. Все хотят добавить термин ИИ в описание своей работы.
М. Ф.: Когда все это происходило?
Д. М.: Работу над докторской диссертацией я начал в 1991 г. и вместе с Эндрю Блейком и Лайонелом Тарасенко работал над нейронными сетями. Майкл Брэйди, теперь сэр Майкл, работал над машинным зрением. Моим руководителем стал Хью Даррант-Уайт, работавший над распределенным ИИ и роботизированными системами. Вместе мы создали несколько автономных транспортных средств и написали об этом книгу.
Мне довелось сотрудничать с командой Лаборатории реактивных двигателей NASA, работавшей над марсоходом. Их интересовали системы машинного восприятия. Космические впечатления!
М. Ф.: Написанный вами код на самом деле используется на марсоходе?
Д. М.: Да. Я работал с группой Man Machine Systems в Лаборатории реактивного движения в Пасадине, штат Калифорния, как один из приглашенных ученых, разрабатывавших алгоритмы машинного восприятия и навигации. Некоторые из этих алгоритмов сейчас применяются в модульных и автономных системах транспортных средств и не только.
Именно в этот период зародился мой интерес к ИИ. Я обнаружил, насколько увлекательна такая вещь, как машинное восприятие. Мы разрабатывали алгоритмы машинного обучения для распределенных и многоагентных систем. Эти алгоритмы должны были понимать окружающую среду и автономно создавать ее модели, даже если никогда не видели этой среды раньше, обучаться по ходу дела.
Многие из моих разработок нашли применение в распределенных сетях и сборе и обобщении данных от различных датчиков. Мы строили системы машинного обучения, используя комбинацию байесовских сетей, придуманных Джудой Перлом, с фильтрами Калмана и другими алгоритмами оценки и прогнозирования. Системы должны были извлекать данные из окружающей среды и широкого спектра источников различного качества, обучаться на них и делать прогнозы. В незнакомых средах они должны были уметь строить карты, собирать информацию о том, что их окружает, и дальше принимать решения, как интеллектуальные системы.
Сейчас я занят в сфере бизнеса, но все равно продолжаю следить за всем, что происходит в области машинного обучения и ИИ.
М. Ф.: Насколько я знаю, свою техническую карьеру вы начали с преподавательской деятельности?
Д. М.: Да, в колледже Баллиол в Оксфорде я преподавал математику и информатику, а также знакомил студентов с робототехникой.
М. Ф.: А как вы перешли к консалтингу по вопросам управления и бизнеса в компании McKinsey?
Д. М.: Это была случайность. Я получил предложение от McKinsey присоединиться к ним в Кремниевой долине и подумал, что это интересный поворот в моей карьере.
Читать дальшеИнтервал:
Закладка: