Мартин Форд - Архитекторы интеллекта. Вся правда об искусственном интеллекте от его создателей
- Название:Архитекторы интеллекта. Вся правда об искусственном интеллекте от его создателей
- Автор:
- Жанр:
- Издательство:Издательство Питер
- Год:2019
- Город:СПб.
- ISBN:978-5-4461-1254-8
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Мартин Форд - Архитекторы интеллекта. Вся правда об искусственном интеллекте от его создателей краткое содержание
Какие подходы и технологии считаются наиболее перспективными? Какие крупные открытия возможны в ближайшие годы? Можно ли создать по-настоящему мыслящую машину или ИИ, сравнимый с человеческим, и как скоро? Какие риски и угрозы связаны с ИИ и как их избежать? Вызовет ли ИИ хаос в экономике и на рынке труда? Смогут ли суперинтеллектуальные машины выйти из-под контроля человека и превратиться в реальную угрозу?
Разумеется, предсказать будущее невозможно. Тем не менее эксперты знают о текущем состоянии технологий, а также об инновациях ближайшего будущего больше, чем кто бы то ни было.
Вас ждут блестящие встречи с такими признанными авторитетами, как Р. Курцвейл, Д. Хассабис, Дж. Хинтон, Р. Брукс и многими другими. В формате PDF A4 сохранен издательский макет книги.
Архитекторы интеллекта. Вся правда об искусственном интеллекте от его создателей - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
В компьютер можно быстро загрузить все произведения Шекспира, и он их никогда не забудет. Человеческая память не может похвастаться подобной емкостью и стабильностью. Наших предков интересовала в основном статистическая информация вида: «На горе больше еды, чем под ней». При таком подходе не имеет значения, в какие конкретно дни собирались статистические данные, важно помнить общую тенденцию.
В отличие от позвоночных, компьютеры используют адресную память, где каждой ячейке соответствует свой адрес, что позволяет хранить информацию практически бесконечно. Чтобы человек смог помнить так же, потребуется вносить изменения в слишком большое количество генов.
При этом компьютерные системы позволяют создавать гибриды, такие как поисковая система Google, которая сначала задействует контекстно-адресную память для поиска по ключевым словам, а затем с помощью адресной памяти определяет, где лежит нужная информация, и корректно отвечает на запросы.
М. Ф.: Можете рассказать более подробно?
Г. М.: Человеческую память могут активизировать различные факторы. Вплоть до позы. То, что человек запоминал стоя, ему будет проще вспомнить стоя. Или печально известный пример, когда человек готовится к экзамену в нетрезвом виде – вероятность успешной сдачи повышается, если он придет в аналогичное состояние.
Не похоже, чтобы наш мозг обладал механизмами адресации отдельных воспоминаний. Вместо этого человек посылает мозгу запрос вида: «Напомни, как испечь пирог». И в ответ получает набор относящихся к данному вопросу воспоминаний, хотя понятия не имеет, где физически они хранятся.
При этом воспоминания человека имеют свойство размываться и перемешиваться. Поэтому очевидцы одного события могут давать разные показания. К сожалению, воспоминание о том, что произошло с вами в определенный момент, невозможно сохранить отдельно от более поздних размышлений или информации, которую вы увидели по телевизору или прочитали в газете.
М. Ф.: Это интересно.
Г. М.: В книге «Клуг» я утверждаю, что существует два вида памяти, и людям достался менее эффективный. Но нельзя перестроить ее с нуля, поэтому новые конструкции приходится строить поверх существующих. Это напоминает аргументы, которые Стивен Джей Гулд приводил в своей книге о большом пальце панды.
Наша память несет с собой и такие вещи, как предвзятость подтверждения. Люди склонны лучше помнить факты, которые согласуются с их точкой зрения. Компьютер же ищет все, что соответствует заданному критерию. При этом он умеет пользоваться оператором НЕ. Например, я могу найти в базе данных все понятия, не попадающие в заданный критерий. А человеческий мозг легко умеет искать только совпадения.
Или другой пример когнитивных искажений – эффект фокусировки. Скажем, ответы на два вопроса – насколько вы счастливы в браке и насколько вы довольны своей жизнью, будут зависеть от того, в каком порядке они будут заданы.
М. Ф.: Это напоминает эффект привязки, который иллюстрируется экспериментом Даниэла Канемана. Когда сообщенное людям случайное число влияет на их дальнейшие предположения.
Г. М.: Да, это вариация того, о чем я говорю. Если я попрошу вас посмотреть последние три цифры на банкноте, а затем спрошу, когда была подписана Великая хартия вольностей, с большой вероятностью увиденное повлияет на ваш ответ.
М. Ф.: Изначально вы работали над вопросами понимания человеческого языка, а затем основали стартап и помогали запуску ИИ-лабораторий в компании Uber.
Г. М.: Я ощущаю себя как Джозеф Конрад, который писал по-английски, хотя его родным языком был польский. Он понимал, как этот язык функционирует. Я пришел в ИИ из когнитивистики.
В детстве я занимался программированием, но к моменту поступления в аспирантуру стал больше интересоваться тем, как устроено мышление. Моим научным руководителем стал Стивен Пинкер – популяризатор науки, специалист в области экспериментальной психологии, психолингвистики и когнитивных наук. Мы исследовали, как дети знакомятся с прошедшим временем, а затем учились применять двухслойные и многослойные персептроны.
В 1986 г. Дэвид Румельхарт и Джеймс Макклелланд опубликовали статью Parallel Distributed Processing: explorations in the microstructure of cognition («Параллельно распределенная обработка: исследование микроструктуры познания»), в которой показывалось, что нейронную сеть можно научить, как ребенка, использовать прошедшее время английского языка. Проблема была в том, что дети делают другие ошибки. Мы предположили, что у детей работает гибридная система из формально применяемых правил и принципа, по которому работают нейронные сети.
М. Ф.: Вы говорите о том, что дети образуют прошедшее время неправильных глаголов, пользуясь правилом для обычных глаголов?
Г. М.: Да, дети иногда придают неправильным глаголам свойства правильных. Машинный анализ 11 000 фрагментов детской речи привел нас к гипотезе, что дети склонны использовать для образования прошедшего времени некое правило. С одной стороны, они добавляют стандартное окончание «-ed», но одновременно используют ассоциативную память: если в прошедшем времени человек употребляет глагол sing как sang, ему будет проще вспомнить, что глагол ring в прошедшем времени звучит rang. Но если встречается новое слово, которое не похоже на слова, слышанные ранее, для образования прошедшего времени будет использовано стандартное правило.
Дело в том, что нейронные сети очень хорошо распознают сходство, но испытывают трудности при распознавании вещей, которые ни на что не похожи, но подпадают под некое правило. Так было в 1992 г., и, по сути, ситуация до сих пор не изменилась. Работа большинства нейронных сетей определяется данными, при этом они не обладают высоким уровнем абстракции. Например, система распознавания объектов на изображениях приняла дорожный знак, покрытый наклейками, за холодильник с едой и напитками.
М. Ф.: Вы исследуете механизмы, отвечающие за понимание речи и обучение языку. Расскажите об экспериментах, которые вы проводили.
Г. М.: С 1999 г. изучая взрослых, детей и младенцев, я обнаружил, что люди хорошо подмечают общие тенденции. Например, семимесячные дети после двух минут прослушивания примеров искусственной грамматики обучались распознавать правила построения предложений. Прослушав предложения вида «la ta ta» и «ga na na», построенные по схеме ABB, младенцы замечали, что «wo fe wo» построено уже по другой схеме (ABA), в то время как предложение «wo fe fe» использует ту же конструкцию.
Критерием служила длительность взгляда. Оказалось, что после изменения схемы младенцы смотрели на экспериментатора дольше. Получается, дети с самого раннего возраста умеют распознавать довольно глубокие языковые абстракции. Позднее другой исследователь показал, что этим свойством обладают и новорожденные.
Читать дальшеИнтервал:
Закладка: