Мартин Форд - Архитекторы интеллекта. Вся правда об искусственном интеллекте от его создателей
- Название:Архитекторы интеллекта. Вся правда об искусственном интеллекте от его создателей
- Автор:
- Жанр:
- Издательство:Издательство Питер
- Год:2019
- Город:СПб.
- ISBN:978-5-4461-1254-8
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Мартин Форд - Архитекторы интеллекта. Вся правда об искусственном интеллекте от его создателей краткое содержание
Какие подходы и технологии считаются наиболее перспективными? Какие крупные открытия возможны в ближайшие годы? Можно ли создать по-настоящему мыслящую машину или ИИ, сравнимый с человеческим, и как скоро? Какие риски и угрозы связаны с ИИ и как их избежать? Вызовет ли ИИ хаос в экономике и на рынке труда? Смогут ли суперинтеллектуальные машины выйти из-под контроля человека и превратиться в реальную угрозу?
Разумеется, предсказать будущее невозможно. Тем не менее эксперты знают о текущем состоянии технологий, а также об инновациях ближайшего будущего больше, чем кто бы то ни было.
Вас ждут блестящие встречи с такими признанными авторитетами, как Р. Курцвейл, Д. Хассабис, Дж. Хинтон, Р. Брукс и многими другими. В формате PDF A4 сохранен издательский макет книги.
Архитекторы интеллекта. Вся правда об искусственном интеллекте от его создателей - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
М. Ф.: Для понимания объектов и концепций нужен более высокий уровень абстракции.
Г. М.: Именно так. Возможно, даже имеет смысл сразу встраивать определенные понятия, например «объект». Вспомните, как люди учатся распознавать цвета. В сетчатке глаза присутствует три типа цветовых рецепторов, чувствительных к разным участкам спектра. Дальше ребенок постепенно узнает, как называются цвета, которые он видит. Но без врожденной способности различать цвета вторая часть становится невозможной. Поэтому ИИ-системам может понадобиться врожденное представление о существовании объектов и о том, что их появление и исчезновение происходят неслучайным образом.
Представьте мир, в котором существует машина для телепортации, как в сериале «Звездный путь», и в любом месте в любой момент может появиться что угодно. На таких данных учиться невозможно. Изучать свойства объектов позволяет тот факт, что в пространстве и времени объекты перемещаются по связанным траекториям, и так сложилось за миллиарды лет эволюции.
М. Ф.: Можно ли создать сильный ИИ с помощью существующих в настоящее время инструментов и какие препятствия стоят на пути к нему?
Г. М.: Глубокое обучение я считаю инструментом, отлично подходящим для классификации шаблонов. Пока нет ничего эффективнее. Но оно не учит рассуждать и делать выводы на абстрактном уровне. Не очень подходит для работы с языком в случаях, когда требуется реальное понимание. Плохо справляется с ситуациями, которые раньше не возникали, и в случаях с неполной информацией. Поэтому его необходимо дополнять другими инструментами.
В более широком смысле, накопленные людьми знания о мире можно записать символически с помощью математики или предложений естественного языка. И мы хотим объединить эту символическую информацию с другой информацией, получаемой путем субъективного восприятия.
Психологи говорят о связи между информацией, которая обрабатывается снизу вверх (взгляд на изображение), и обрабатываемой сверху вниз (интерпретация увиденного на базе личного опыта).
Современные системы глубокого обучения имеют дело с восходящей информацией. Они могут интерпретировать пикселы, но не объект.
В статье Adversarial Patch («Состязательный патч») [20] https://arxiv.org/pdf/1712.09665.pdf.
демонстрируется способ обмануть систему глубокого обучения, добавив на изображение стикер. Система без проблем распознает изображенный на фото банан, а затем рядом наклеивается картинка, напоминающая выкрашенный в ядовитые цвета тостер. Человек сразу скажет, что это банан и забавная наклейка, в то время как система глубокого обучения уверенно опознает всю картинку как тостер.
Дело в том, что она пытается указать на наиболее заметный фрагмент изображения, поэтому ее внимание привлекает высококонтрастный, яркий тостер, а неяркий, однотонный банан она игнорирует.
Этот пример доказывает, что системы глубокого обучения получают только восходящую информацию, за обработку которой у человека отвечает затылочная доля. Они не умеют воспроизводить процессы, происходящие в лобных долях, то есть рассуждать о том, что на самом деле происходит.
Для создания сильного ИИ должны воспроизводиться оба процесса. На мой взгляд, следует добавить к глубокому обучению манипуляции с символами.
М. Ф.: Какая компания или проект ближе всего подошли к созданию сильного ИИ?
Г. М.: Меня впечатлил проект Mosaic, над которым работают в AI2. Это вторая попытка решить проблему, над которой бился Дуг Ленат, – как преобразовать человеческие знания в форму, понятную программному обеспечению. Множество информации нигде не зафиксировано. Например, никто специально не фиксирует факт, что тостеры меньше автомобилей.
М. Ф.: То есть требуется добавить формальную логику?
Г. М.: Тут возникают два связанных вопроса. Во-первых, каким образом мы вообще получаем знания? Во-вторых, хотим ли использовать для манипуляции ими символическую логику?
Мне кажется, что от символической логики не следует отказываться, и надеюсь, что кто-то найдет способ ее добавить. Самым крупным проектом такого рода был Cyc Дуга Лената, начатый примерно в 1984 г. Этот закрытый проект оказался не очень эффективным. Сейчас, когда о машинном обучении известно намного больше, AI2 предпочитает делать вещи с открытым исходным кодом, в работе над которыми может принять участие сообщество.
М. Ф.: Когда, по вашим расчетам, может появиться сильный ИИ?
Г. М.: Понятия не имею. Есть множество причин, не дающих создать сильный ИИ здесь и сейчас. Можно назвать разве что доверительный интервал, как в статистике: период между 2030 г. и, в случае большой удачи, 2050 г., а в худшем случае – 2130 г. Думаю, что в 1994 г., работая над книгой «Дорога в будущее», Билл Гейтс не осознавал, как сильно интернет изменит мир. ИИ хорошо финансируется, и, возможно, мы сможем продвинуться вперед.
М. Ф.: Итак, вы предполагаете, что прорыв может случиться или через 12, или через 112 лет.
Г. М.: В сильном ИИ особых достижений не наблюдается. Например, персональный помощник Siri, появившийся в 2010 г., не сильно отличается от созданной в 1966 г. программы ELIZA, которая пародировала диалог с психотерапевтом, реализуя технику активного слушания. До понимания естественного языка нам по-прежнему далеко. Но я все равно склонен к оптимистичным прогнозам.
М. Ф.: Да, ИИ больше не ограничен стенами университетов, он занял центральное место в бизнес-моделях крупных компаний, таких как Google и Facebook.
Г. М.: Сейчас на ИИ тратится намного больше денег, чем раньше, хотя в 1960-х гг., до начала так называемой «зимы ИИ» инвестиции в эту сферу также были достаточно большими. Но важно понимать, что хотя деньги – необходимое условие для продолжения исследований, они не гарантируют, что решение проблем будет найдено.
М. Ф.: Тогда давайте поговорим о более узкой технологии – беспилотных автомобилях. Когда, по вашему мнению, в произвольное место можно будет вызвать такси, которым управляет ИИ?
Г. М.: Как минимум через 10 лет.
М. Ф.: Практически такой же срок вы называли в прогнозе для сильного ИИ.
Г. М.: Дело в том, что вождение в мегаполисах связано с необходимостью постоянно обрабатывать непредсказуемые ситуации. Для ИИ могут стать проблемой даже такие простые элементы, как защитные барьеры. Людей в таких случаях выручает здравый смысл. Современные беспилотные автомобили используют карты с высокой детализацией и технологию LIDAR, зрительная система человека работает хуже машинной, но люди лучше понимают, что происходит вокруг. Я не уверен, что простым увеличением количества воспринимаемых данных можно достичь точности, необходимой для вождения на Манхэттене. Можно получить точность 99,99 %, но даже этого будет недостаточно.
Читать дальшеИнтервал:
Закладка: