Мартин Форд - Архитекторы интеллекта. Вся правда об искусственном интеллекте от его создателей
- Название:Архитекторы интеллекта. Вся правда об искусственном интеллекте от его создателей
- Автор:
- Жанр:
- Издательство:Издательство Питер
- Год:2019
- Город:СПб.
- ISBN:978-5-4461-1254-8
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Мартин Форд - Архитекторы интеллекта. Вся правда об искусственном интеллекте от его создателей краткое содержание
Какие подходы и технологии считаются наиболее перспективными? Какие крупные открытия возможны в ближайшие годы? Можно ли создать по-настоящему мыслящую машину или ИИ, сравнимый с человеческим, и как скоро? Какие риски и угрозы связаны с ИИ и как их избежать? Вызовет ли ИИ хаос в экономике и на рынке труда? Смогут ли суперинтеллектуальные машины выйти из-под контроля человека и превратиться в реальную угрозу?
Разумеется, предсказать будущее невозможно. Тем не менее эксперты знают о текущем состоянии технологий, а также об инновациях ближайшего будущего больше, чем кто бы то ни было.
Вас ждут блестящие встречи с такими признанными авторитетами, как Р. Курцвейл, Д. Хассабис, Дж. Хинтон, Р. Брукс и многими другими. В формате PDF A4 сохранен издательский макет книги.
Архитекторы интеллекта. Вся правда об искусственном интеллекте от его создателей - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
В 2011–2012 гг. во время академического отпуска я решила посмотреть, могут ли мои разработки на тему сотрудничества изменить мир. С этого началась моя работа в сфере здравоохранения. Вместе с педиатром из Стэнфорда Ли Сандерсом мы стали искать новые методы координации. Особое внимание мы уделили детям со сложными заболеваниями, которые посещают множество врачей. Нужно было создать систему, которая поможет этим врачам обмениваться информацией и успешно координировать свои действия.
М. Ф.: На мой взгляд, здравоохранение – одна из наиболее перспективных областей для применения ИИ.
Б. Г.: Правильно. Как и в сфере образования, здесь важно сосредоточиться на создании систем, дополняющих, а не замещающих людей.
М. Ф.: Как вы относитесь к тому, что сейчас везде говорят о глубоком обучении? Мне кажется, что в результате у людей складывается впечатление, что глубокое обучение – это синоним ИИ.
Б. Г.: Если брать философские смыслы, глубокое обучение не позволяет получить систему, которая мыслит глубже, чем системы, обученные другими способами. Оно хорошо функционирует благодаря большей математической гибкости и подходит для выполнения задач по принципу сквозной обработки: на вход поступает сигнал, на выходе мы получаем ответ. Но этот ответ зависит от того, на каких именно данных система обучена.
М. Ф.: Не приведет ли признание всех этих ограничений к движению против глубокого обучения?
Б. Г.: Как человек, уже переживавший «зимы ИИ», я чувствую страх и надежду. Чтобы избежать «зимы», нужно четко определить, какое место в создании ИИ занимает глубокое обучение.
М. Ф.: Думаю, нужно работать над системами, умеющими обучаться на меньших количествах данных.
Б. Г.: При этом вопрос не столько в количестве данных, сколько в их разнообразии. Сейчас мы имеем системы, качество работы которых зависит от того, к какой группе принадлежит пользователь.
М. Ф.: Вы сейчас имеете в виду систему распознавания лиц, которая испытывает трудности при работе с изображениями представителей негроидной расы?
Б. Г.: Это простейший пример, который сразу приходит на ум. Но проблема смещения данных присутствует во всех областях. Скажем, при разработке нового лекарства исследования в основном проводятся на молодых людях. В результате сложно определить корректную дозировку для пожилых.
М. Ф.: Систематическая ошибка в данных, обусловленная решениями, которые принимались в процессе исследований, имеет место не только в сфере ИИ.
Б. Г.: Именно так. Компьютерная система может «прочесть все документы», извлечь из них нужную информацию и провести статистический анализ. Но если в большинстве статей описываются результаты опытов на самцах мыши, система не сможет прийти к обобщенным выводам.
Кроме того, существуют ограничения, связанные с правовым полем, с охраной данных и с законностью их использования. Об этом тоже нужно думать на стадии построения ИИ-систем.
М. Ф.: В отличие от вас, многие специалисты заинтересованы в создании независимых машин.
Б. Г.: Мне кажется, они читают слишком много научно-фантастических романов!
М. Ф.: Тогда сильный ИИ – тоже научная фантастика? Что, с вашей точки зрения, мешает его создать?
Б. Г.: В конце 1970-х гг., когда я заканчивала работу над диссертацией, мой однокурсник сказал: «Хорошо, мы не ставим перед собой цель заработать денег, ведь за нашу работу никогда не будут много платить». Я часто вспоминаю этот прогноз и понимаю, что хрустального шара, позволяющего заглянуть в будущее, не существует.
С моей точки зрения, не нужно стремиться к сильному ИИ, потому что его появление влечет за собой такие вещи, как массовая безработица и выход роботов из-под контроля. Эти вопросы отвлекают специалистов от актуальных этических проблем с уже существующими ИИ-системами.
Разумеется, люди в течение многих сотен лет задумывались над тем, можно ли создать нечто такое же умное, как человек. Вспомните хотя бы пражского Голема или Франкенштейна. Невозможно запретить людям фантазировать, главное не тратить на это наши ресурсы и интеллект.
М. Ф.: А все-таки, какие препятствия стоят на пути к созданию сильного ИИ?
Б. Г.: Выше я уже упоминала одно из главных препятствий. Нужно получить широкий спектр данных, но это означает, что придется, как Большой Брат, следить за поведением огромного количества людей. Пока непонятно, как перейти к общему интеллекту, умеющему гибко перемещаться из одной области в другую и думать не только о настоящем, но и о будущем.
М. Ф.: Но для сокращения количества рабочих мест специализированных ИИ-систем вполне достаточно. Вы считаете это поводом для беспокойства?
Б. Г.: Да, у нас есть повод для беспокойства, но это более широкая технологическая проблема, чем внедрение ИИ. За ее возникновение ответственны как создатели технологий, так и представители деловых кругов. Помимо вопросов сокращения сотрудников, какой бы интеллектуальной ни была машина, она будет проигрывать квалифицированному работнику, что приведет к падению качества обслуживания клиентов. Именно поэтому я так много говорю о необходимости систем, которые дополняют людей.
М. Ф.: Я считаю, что в данном случае речь идет о столкновении технологий и капитализма.
Б. Г.: Вы совершенно правы!
М. Ф.: Исторически стремление заработать, сокращая расходы, было положительным моментом. Но сейчас нужно что-то менять, пока не началось беспрецедентное вытеснение людей с рабочих мест.
Б. Г.: С этим я полностью согласна. Недавно я говорила об этом в Американской академии наук и искусств, выделяя два ключевых момента. Во-первых, вопрос не в том, какие системы мы можем построить, а в том – какие должны. У создателей технологии всегда есть выбор, даже в капиталистической системе. Во-вторых, в курс computer science следует добавить этику, чтобы студенты думали не только об эффективности и элегантности кода, но и о моральной стороне разработок. На этой встрече я приводила в пример компанию Volvo, конкурентным преимуществом которой стали безопасные автомобили. Нужно сделать так, чтобы конкурентным преимуществом стали системы, которые хорошо работают с людьми. Но для этого инженеры должны сотрудничать с социологами и специалистами по этике.
М. Ф.: Какие еще опасности, на ваш взгляд, в ближайшей перспективе и в будущем несет в себе ИИ?
Б. Г.: Лично у меня есть множество вопросов по поводу возможностей, которые дает ИИ, доступных ему методов и вариантов применения этих методов, а также по поводу дизайна ИИ-систем.
Читать дальшеИнтервал:
Закладка: