Джеффри Уэст - Масштаб. Универсальные законы роста, инноваций, устойчивости и темпов жизни организмов, городов, экономических систем и компаний
- Название:Масштаб. Универсальные законы роста, инноваций, устойчивости и темпов жизни организмов, городов, экономических систем и компаний
- Автор:
- Жанр:
- Издательство:Литагент Аттикус
- Год:2018
- Город:Москва
- ISBN:978-5-389-14631-0
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Джеффри Уэст - Масштаб. Универсальные законы роста, инноваций, устойчивости и темпов жизни организмов, городов, экономических систем и компаний краткое содержание
Масштаб. Универсальные законы роста, инноваций, устойчивости и темпов жизни организмов, городов, экономических систем и компаний - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Когда люди начали образовывать крупные сообщества, они привнесли на нашу планету принципиально новую динамику. Изобретение языка и последующий обмен информацией в пространстве социальных сетей позволили нам научиться вводить инновации и создавать ценности и идеи, что в конечном итоге и привело к суперлинейному масштабированию. В биологии сетевая динамика ограничивает темп жизни, заставляя его систематически снижаться с увеличением размеров в соответствии со степенными законами с показателями, кратными ¼. Напротив, динамика социальных сетей, лежащая в основе создания ценностей и инноваций, порождает противоположное поведение, а именно систематическое увеличение темпа жизни с увеличением размеров городов. Болезни распространяются быстрее, предприятия возникают и закрываются чаще, сделки проводятся с большей скоростью, и даже люди в большом городе ходят быстрее – и все это следует правилу приблизительно 15 %-го увеличения. Все мы чувствуем, что жизнь в большом городе идет быстрее, чем в маленьком, и что ее темп повсеместно возрастает в течение нашей собственной жизни по мере увеличения городов и экономического роста.
Необходимым топливом роста являются энергия и другие ресурсы. В биологии в качестве движущей силы роста выступает метаболизм, сублинейный характер масштабирования которого приводит к предсказуемому, почти неизменному размеру в зрелом состоянии. С точки зрения традиционного экономического мышления такое состояние считалось бы катастрофическим, поскольку здоровые экономические системы, будь то на уровне города или целой страны, характеризуются неограниченным экспоненциальным ростом, по меньшей мере на несколько процентов в год и до бесконечности. Если сублинейное масштабирование уровня метаболизма приводит в биологии к ограничению роста, то суперлинейное масштабирование создания ценностей и инноваций (которое можно измерить, например, по числу выдаваемых патентов) приводит к неограниченному, часто превышающему экспоненциальный росту, согласующемуся с неограниченными экономическими системами. Такое соответствие не может не радовать, но есть одна большая проблема, известная под неприятным техническим названием сингулярности конечного времени . Суть ее сводится к тому, что теория также предсказывает, что неограниченный рост невозможно поддерживать, не располагая бесконечными ресурсами либо не производя фундаментальных, системных изменений, которые «обнуляли» бы отсчет времени до наступления потенциального краха. До сих пор мы поддерживали неограниченный рост и избегали краха благодаря непрерывному циклу радикально изменяющих систему инноваций, например связанных с величайшими в истории человечества открытиями и изобретениями – железа, пара, угля, вычислительной техники и, совсем недавно, цифровых информационных технологий. Один лишь перечень таких открытий, великих и малых, служит доказательством необычайной изобретательности коллективного разума человечества.
Однако и здесь, к сожалению, есть одна серьезная проблема. Теория утверждает, что такие открытия должны делаться со всевозрастающей частотой; время, проходящее между последовательными инновациями, должно систематически и неизбежно сокращаться. Например, между «компьютерным веком» и «информационно-цифровым веком» прошло лет двадцать, в то время как между каменным, бронзовым и железным веками проходили тысячелетия. Поэтому, если мы и дальше собираемся поддерживать непрерывный неограниченный рост, это приведет не только к неизбежному увеличению темпа жизни, но и к необходимости все большего увеличения частоты инноваций. Краткосрочное проявление этого принципа всем нам хорошо знакомо – речь идет о росте скорости появления все новых технических новинок и моделей. Ощущение такое, будто мы оказались на последовательности движущихся все быстрее беговых дорожек, да еще и вынуждены перепрыгивать с одной на другую со всевозрастающей частотой. Такая ситуация явно не может быть устойчивой и потенциально может привести к краху всей урбанизированной социально-экономической системы. Бесконтрольное создание ценностей и инноваций, питающее социальные системы, в то же время сеет потенциальные семена их неизбежного краха. Можем ли мы избежать этой судьбы, или же мы заперты в интереснейшем, но обреченном на неудачу эксперименте в области естественного отбора?
9. Компании и предприятия
Область применения этих идей естественно расширить, чтобы попытаться узнать, насколько они применимы к компаниям. Может ли существовать численная, обладающая предсказательной силой теория компаний ? Проявляют ли компании систематические регулярные черты, не зависящие от их размеров и сферы деятельности? Например, можно ли считать, что в том, что касается торгового оборота и размеров активов, компании Walmart и Google, доходы которых превышают полтриллиона долларов, – это приблизительно увеличенные версии более мелких компаний с объемом продаж менее 10 миллионов? Как это ни удивительно, ответ на этот вопрос получается утвердительным, как видно из рис. 4: компании, подобно организмам и городам, также подчиняются простым степенным законам масштабирования. Не менее удивительно и то, что их масштабирование в зависимости от размеров сублинейно, а не суперлинейно, как социально-экономические параметры городов. В этом отношении компании гораздо более похожи на живые организмы, чем на города. Степенной показатель масштабирования компании составляет около 0,9, в то время как для городских инфраструктур он был равен 0,85, а для организмов – 0,75. Однако колебания вокруг точного уровня масштабирования у компаний гораздо больше, чем у организмов или городов. Особенно велики эти колебания на ранних стадиях развития компаний, на которых они еще сражаются за место на рынке. Тем не менее удивительная регулярность, проявляющаяся в среднем в их поведении, заставляет предположить, что, несмотря на их широкое разнообразие и кажущуюся индивидуальность, рост и деятельность компаний подчиняются общим ограничениям и принципам, не зависящим ни от их размера, ни от области их работы.
Сублинейное масштабирование метаболизма организмов обеспечивает прекращение их роста и определяет их размер в зрелом состоянии, который остается приблизительно неизменным до самой их смерти. Сходная жизненная траектория действует и для компаний. В первые годы своего существования они быстро растут, но по мере приближения к зрелости этот рост замедляется, и, если компания вообще выживает, она рано или поздно перестает расти относительно ВВП. В юности, когда компании пытаются оптимизировать свою рыночную позицию, развитие многих из них определяет целый спектр инновационных идей. Однако по мере их роста и стабилизации их положения диапазон их продукции неизбежно сужается, причем одновременно с этим они вынуждены развивать значительную административную и бюрократическую структуру. Сравнительно быстро экономия на масштабе и сублинейное масштабирование, отражающие задачи эффективного управления большой и сложной организацией, начинают доминировать над инновациями и идеями, заключенными в суперлинейном масштабировании, и это в конце концов приводит к застою и смерти. Половина всех предприятий любого из поколения компаний, котирующихся на американских биржах, исчезает в течение десяти лет, и лишь немногие доживают до пятидесяти, не говоря уже о ста [22] M. I. G. Daepp et al. The Mortality of Companies // Journal of the Royal Society Interface. 2015. 12. 20150120.
.
Интервал:
Закладка: