Чарльз Петцольд - Код. Тайный язык информатики

Тут можно читать онлайн Чарльз Петцольд - Код. Тайный язык информатики - бесплатно ознакомительный отрывок. Жанр: Прочая научная литература, издательство Манн, Иванов и Фербер, год 2019. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Чарльз Петцольд - Код. Тайный язык информатики краткое содержание

Код. Тайный язык информатики - описание и краткое содержание, автор Чарльз Петцольд, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Книга «Код» представляет собой увлекательное путешествие в прошлое – мир электрических устройств и телеграфных машин. Знакомство с прообразами первых компьютеров позволит читателю с любым уровнем технической подготовки узнать о том, как работают современные электронные устройства.

Код. Тайный язык информатики - читать онлайн бесплатно ознакомительный отрывок

Код. Тайный язык информатики - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Чарльз Петцольд
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Попробуем обойтись памятью в четыре килобайта, используя только 32 чипа. Каждый набор микросхем, соединенных между собой для хранения целого байта (как показано выше), называется банком . Плата памяти емкостью четыре килобайта содержит четыре банка, каждый из которых состоит из восьми микросхем.

В таких 8-разрядных микропроцессорах, как 8080 и 6800, используются 16-разрядные адреса, с помощью которых можно адресовать 64 килобайта памяти. Когда вы подключаете плату памяти емкостью четыре килобайта, содержащую четыре банка микросхем, 16 адресных сигналов платы памяти выполняют следующие функции.

Десять адресных сигналов с A0 по A9 напрямую подключены к микросхемам RAM - фото 433

Десять адресных сигналов, с A0 по A9, напрямую подключены к микросхемам RAM. Адресные сигналы A10 и A11 позволяют выбрать, к какому из четырех банков осуществляется обращение. Адресные сигналы с A12 по A15 определяют, какие адреса относятся к конкретной плате, то есть на какие адреса эта плата реагирует. Наша плата памяти емкостью четыре килобайта может занимать один из шестнадцати 4-килобайтных диапазонов во всем адресном пространстве процессора емкостью 64 килобайта:

от 0000h до 0FFFh;

от 1000h до 1FFFh;

от 2000h до 2FFFh;

от F000h до FFFFh.

Предположим, мы решили, что к этой плате памяти емкостью четыре килобайта будут относиться адреса в диапазоне от A000h до AFFFh. Значит, адреса с A000h по A3FFh будут заняты первым банком однокилобайтных микросхем, с A400h по A7FFh — вторым, с A800h по ABFFh — третьим, с AC00h по AFFFh — четвертым.

Обычно 4-килобайтная плата памяти предусматривает возможность изменения диапазона адресов, на которые она реагирует. Для этого используется так называемый DIP-переключатель (Dual Inline Package), представляющий собой набор крошечных переключателей (от двух до двенадцати) в корпусе с двухрядным расположением выводов, который вставляется в обычное гнездо для интегральной микросхемы.

Можно подключить его к четырем старшим адресным разрядам шины используя схему - фото 434

Можно подключить его к четырем старшим адресным разрядам шины, используя схему компаратор .

Как вы помните выход вентиля ИсклИЛИ равен 1 только тогда когда на его входы - фото 435

Как вы помните, выход вентиля Искл-ИЛИ равен 1 только тогда, когда на его входы подаются разные значения. Выход вентиля Искл-ИЛИ — 0, если оба входных значения одинаковы.

Например, замыкание переключателей, соответствующих линиям A13 и A15, приведет к тому, что плата памяти будет реагировать на адреса с A000h по AFFFh. Когда значения адресных сигналов шины A12, A13, A14 и A15 равны значениям, установленным с помощью переключателей, выходы всех четырех вентилей Искл-ИЛИ равны 0, значит, выход вентиля ИЛИ-НЕ равен 1.

Затем вы можете объединить этот сигнал Равно с дешифратором 2 на 4 чтобы - фото 436

Затем вы можете объединить этот сигнал «Равно» с дешифратором «2 на 4», чтобы генерировать сигналыдля каждого из четырех банков памяти.

Если сигнал A10 равен 0 а A11 1 значит выбран третий банк Если вы еще - фото 437

Если сигнал A10 равен 0, а A11 — 1, значит, выбран третий банк.

Если вы еще помните сложный процесс сборки массивов RAM из главы 16, можете предположить, что нам нужно использовать восемь селекторов «4 на 1» для выбора правильных выходных сигналов от четырех банков памяти. Однако в данном случае они не потребуются, и вот почему.

Как правило, выходные сигналы интегральных схем, совместимых с ТТЛ-чипами, принимают значения либо более 2,2 вольта (логическая единица), либо менее 0,4 вольта (логический ноль). Что произойдет, если вы попытаетесь соединить эти выходные сигналы? Например, к чему приведет соединение выходного сигнала, равного 1, одной схемы и выходного сигнала, равного 0, другой? Определенно ответить на этот вопрос нельзя, поэтому выходы интегральных схем обычно не соединяются друг с другом.

Выходной сигнал микросхемы 2102 известен как сигнал с тремя состояниями . Помимо логических 0 и 1, для этого выходного сигнала предусмотрено третье состояние, соответствующее отсутствию какого-либо сигнала, будто этот вывод микросхемы вообще ни к чему не подключен. Выходной сигнал микросхемы 2102 переходит в это третье состояние, когда вход CS равен 1. Это означает, что мы можем соединить соответствующие выходные сигналы всех четырех банков и использовать эти восемь комбинированных выходов в качестве восьми линий шины для ввода данных.

Заостряю ваше внимание на выходном сигнале с тремя состояниями, потому что он играет важную роль в работе шины. Практически все платы, подключенные к шине, используют ее линии ввода данных. В любой момент только одна подключенная к шине плата может задействовать эти линии. При этом выходные сигналы остальных плат должны находиться в третьем состоянии.

Микросхема 2102 — это статическая память с произвольным доступом, или SRAM (Static Random Access Memory), которая отличается от динамической памяти с произвольным доступом, или DRAM (Dynamic Random Access Memory). Памяти SRAM обычно требуется четыре транзистора для хранения одного бита (это не так много, как в триггерах из главы 16). Памяти DRAM для этого нужен только один транзистор. Однако недостаток памяти DRAM — необходимость использования более сложных вспомогательных схем.

Содержимое памяти SRAM, например микросхемы 2102, сохраняется только при наличии питания. Если питание отключается, содержимое исчезает. Это касается и памяти DRAM, однако микросхема DRAM также требует периодического считывания данных, даже если в них нет необходимости. Такой цикл обновления должен повторяться несколько сотен раз в секунду. Это все равно что периодически тормошить человека, чтобы он не заснул.

Несмотря на сложности, связанные с использованием памяти DRAM, постоянно увеличивающаяся емкость этих микросхем сделала их стандартом. В 1975 году компания Intel представила микросхему DRAM емкостью 16 384 бит. В соответствии с законом Мура емкость микросхем DRAM увеличивается в четыре раза каждые три года. Современные компьютеры обычно предусматривают гнезда для памяти прямо на системной плате, куда вставляются небольшие платы, называемые модулями памяти SIMM (Single Inline Memory Module) или DIMM (Dual Inline Memory Module), с несколькими микросхемами DRAM.

Теперь вы знаете, как создавать платы памяти, однако не стоит заполнять памятью все адресное пространство микропроцессора. Нужно выделить некоторую его часть для устройства вывода.

Электронно-лучевая трубка (ЭЛТ) была наиболее распространенным устройством вывода для компьютеров. ЭЛТ, подключенная к компьютеру, обычно называется дисплеем, или монитором ; электронный компонент, подающий дисплею сигнал, именуется видеоадаптером . Часто видеоадаптер занимает в компьютере отдельную видеокарту .

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Чарльз Петцольд читать все книги автора по порядку

Чарльз Петцольд - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Код. Тайный язык информатики отзывы


Отзывы читателей о книге Код. Тайный язык информатики, автор: Чарльз Петцольд. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
Bestplay Smit
11 января 2025 в 19:53
Книга просто очень классная. Я когда вырасту хочу стать этичным хакером. И сейчас мне 9 лет. Но я уже могу создавать красивые сайты. Так что я твёрдо иду к своей цели и не сдаюсь!
x