Коллектив авторов - На что похоже будущее? Даже ученые не могут предсказать… или могут?
- Название:На что похоже будущее? Даже ученые не могут предсказать… или могут?
- Автор:
- Жанр:
- Издательство:Альпина нон-фикшн
- Год:2020
- Город:Москва
- ISBN:978-5-0013-9204-0
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Коллектив авторов - На что похоже будущее? Даже ученые не могут предсказать… или могут? краткое содержание
На что похоже будущее? Даже ученые не могут предсказать… или могут? - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
NASA продвинулось в разработке антикоррозионных покрытий дальше остальных, создав умную краску, которая не только указывает на коррозию, но еще и содержит микрокапсулы, из которых в ответ на контакт со щелочной средой высвобождаются масляные ингибиторы коррозии, останавливающие ее в самом зародыше. Возможность борьбы с коррозией без вмешательства со стороны может оказать большое влияние на экономику страны: в это трудно поверить, но, например, в Великобритании коррозия ежегодно причиняет ущерб приблизительно в 3 % ВВП, что составляет £60 млрд.
Вполне вероятно, что в скором времени мы сможем поблагодарить братьев Кюри и открытые ими умные пьезоэлектрические материалы за новое поколение уличных фонарей, дорожных знаков и светофоров, которые будут получать энергию от дорожного покрытия. Когда сегодня нужны пьезоэлектрические свойства, чаще всего используется искусственный керамический материал под названием «цирконат-титанат свинца». Атомы данного материала образуют асимметричную кристаллическую структуру, поэтому при сжатии возникает электрическое напряжение. Обычно, когда люди слышат слово «кристалл», в их сознании возникает образ сверкающих прозрачных драгоценных камней. Но для ученого-материаловеда кристаллы — это твердые вещества, атомы которых ряд за рядом упаковываются в трехмерную циклическую структуру. Большинство драгоценных камней действительно кристаллы, но не они одни — металлы, глина, лед, горные породы и некоторые виды пластика также состоят из кристаллов. Элементарная ячейка из атомов, которая до бесконечности повторяется в структуре кристаллов, у большинства из них и сама по себе симметрична: то есть совмещается сама с собой при поворотах или при отражении. В кристаллах с пьезоэлектрическими свойствами элементарные ячейки асимметричны. В обычных условиях заряды в узлах решетки пьезоэлектрического кристалла компенсируют друг друга: отрицательный заряд в одной уравновешивается положительным зарядом в соседней. Однако при сжатии или растяжении узлы асимметрично упорядоченной структуры смещаются таким образом, что заряды перестают компенсировать друг друга. В результате одна грань элементарной ячейки оказывается положительно заряженной, другая — отрицательно. При сжатии или растяжении миллионов элементарных ячеек всего кристалла электрическое напряжение на его гранях становится вполне заметным. Если включить такой пьезоэлектрический кристалл в электрическую цепь, то вырабатываемое им напряжение можно использовать для практических нужд. Например, при размещении таких материалов под полотном дороги можно получать электрический ток, возникающий при сжатии пьезоэлектрика под тяжестью проезжающих по асфальту автомобилей. Этим током можно заряжать батареи и использовать накопленную в них энергию, например, для освещения дороги. Ряд пилотных проектов по изучению возможности реализации таких систем уже демонстрируют многообещающие результаты. Причем с помощью данной технологии можно получать электричество даже с обувных подошв.
Благодаря самовосстанавливающемуся бетону — умному материалу, который способен выявлять дефекты и устранять их без постороннего вмешательства, — в будущем проблема выбоин и ям на дорогах перестанет быть головной болью для велосипедистов, автомобилистов и чиновников местных органов власти. Образование трещин в бетоне происходит из-за воздействия находящейся в атмосфере влаги и дождей. В самовосстанавливающемся бетоне содержатся ингредиенты, которые при контакте с водой заполняют собой трещины. Одним из примеров такого заполнителя является добавка на основе глины, в состав которой также входят бактерии в анабиозе и лактат кальция — вещество, знакомое каждому, кто надолго оставлял сыр в холодильнике, а через некоторое время наблюдал на его поверхности кристаллы белого цвета. Под воздействием воды бактерии выходят из анабиоза, поглощают лактат кальция и выделяют известняк, который заполняет трещину и предотвращает дальнейшее разрушение. Этот материал можно использовать на дорогах, в зданиях и иных сооружениях. Особенно полезен он может быть в тех частях мира, где отмечается повышенная сейсмическая активность.
В условиях холодного климата велосипедистам нужна одежда, способная адаптироваться к теплу, выделяемому телом: при больших физических нагрузках во время езды на велосипеде она должна обеспечивать хорошую вентиляцию, а в обычных условиях — сохранять тепло. Для решения этой проблемы могут быть использованы полимеры с памятью формы, быстро меняющие ее при нагреве. Полимеры — это материалы, молекулы которых состоят из большого количества атомов, соединенных в длинные цепочки. Примеры полимеров — это резина, пластмассы и такие вещества природного происхождения, как белки. Свою исходную форму, ту, которую он «запоминает», полимер получает в процессе производства. На последнем этапе такой материал нагревается, ему придается другая, временная, форма, после чего он охлаждается. Временную форму он сохраняет до того момента, когда он будет нагрет до температуры перехода в пластическое состояние. После этого он восстанавливает свою исходную форму. Каждый раз, когда материал нагревается или охлаждается до определенной температуры, он принимает одну из форм, находящихся в его «памяти». В будущем в качестве подстежки в куртках для велосипедистов можно было бы использовать мягкий полимер с памятью формы, который будет удерживать воздух подобно спальному мешку при низких температурах, а во время повышенной физической активности — сжиматься, чтобы обеспечивать отток выделяемого телом избыточного тепла.
Аналогичным образом ведут себя чувствительные к влаге полимеры — только они меняют свою форму при контакте с водой. Когда он сухой, такой полимер остается жестким, но стоит материалу вступить во взаимодействие с водой, которая выступает в данном случае в качестве пластификатора, как он размягчается. Из подобных полимеров можно получить ткань с миниатюрными влагочувствительными чешуйками, которые в сухом состоянии располагаются под прямым углом к волокнам, что обеспечивает оптимальную воздухопроницаемость. Стоит пойти дождю, чешуйки размягчаются, опускаются и накладываются друг на друга, образуя водонепроницаемый слой.
Все мы хорошо знакомы со свойствами нашей кожи, обеспечивающими ее восстановление при повреждении. Они бывают полезными, например, при падении с велосипеда. Благодаря самовосстанавливающимся текстильным изделиям в будущем то же самое может происходить с нашей порванной одеждой. В составляющих ее тканях будет содержаться необычный ингредиент — специальный белок, который в своей природной форме встречается в зубчиках на присосках щупалец кальмаров и который может быть синтезирован в лабораторных условиях. Когда ткань рвется, данный белок обеспечивает формирование новых химических связей по обеим сторонам разрыва. Таким образом, менее чем за минуту ткань сама себя «зашивает» — достаточно лишь добавить воду и сдавить место разрыва. Так что любителям велосипедных прогулок больше не придется заботиться о порванной одежде. Жаль, что душевные травмы так быстро не исцелить.
Читать дальшеИнтервал:
Закладка: