Николай Чурсин - Популярная информатика

Тут можно читать онлайн Николай Чурсин - Популярная информатика - бесплатно полную версию книги (целиком) без сокращений. Жанр: Прочая научная литература, издательство Техника, год 1980. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Николай Чурсин - Популярная информатика краткое содержание

Популярная информатика - описание и краткое содержание, автор Николай Чурсин, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
"Информатика возникла сравнительно недавно (примерно тридцать лет назад) и по сравнению с другими науками еще совсем молода. Но несмотря на это, в настоящее время она выдвинулась в ряд важнейших областей знания. Причина ее стремительного развития состоит в том, что предмет ее исследования — научная информация, свойства и закономерности ее распространения — приобретает в современном мире исключительно важное значение." - текстовая версия.

Популярная информатика - читать онлайн бесплатно полную версию (весь текст целиком)

Популярная информатика - читать книгу онлайн бесплатно, автор Николай Чурсин
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Теперь самое время задать вопрос: а что такое информация? Что мы знаем о ней? Можно ли сформулировать определение информации? В настоящее время человечество, столкнувшись с первыми проявлениями информационного взрыва, занялось изучением сущности понятия информации и ее свойств. Однако на сегодняшний день мы не можем сказать, что знаем все или почти все об информации Долгое время — тысячелетиями — люди накапливали информацию, вооружались знаниями, не задумываясь, как это происходит. Теперь дальнейшее овладение знаниями невозможно без пристального изучения этого процесса. Оказалось, что нам нужны не просто знания и не просто информация. Нам необходимы знания о знании и информация об информации. В результате появилось множество научных дисциплин, изучающих различные аспекты понятия информации, все, что так или иначе связано с этим понятием. И первые результаты этого развернутого «наступления на информацию» дают возможность предполагать, что информационный кризис будет преодолен.

Что же такое информация?

Немного теории…

Слово «информация» происходит от латинского — разъяснение, изложение, осведомленность. В течение многих веков понятие информации не раз претерпевало изменения, то расширяя, то предельно сужая свои границы. Сначала под этим словом понимали «представление», «понятие», затем — «сведения», «передачу сообщений». В XX в. бурное развитие получили всевозможные средства связи (телефон, телеграф, радио), назначение которых заключалось в передаче сообщений. Однако эксплуатация их выдвинула ряд проблем: как обеспечить надежность связи при наличии помех, какой способ кодирования сообщения применять в том или ином случае, как закодировать сообщение, чтобы при минимальной его длине обеспечить передачу смысла с определенной степенью надежности. Эти проблемы требовали разработки теории передачи сообщений, иными словами, теории информации. Одним из основных вопросов этой теории был вопрос о возможности измерения количества информации.

Попытки количественного измерения информации предпринимались неоднократно. Первые отчетливые предложения об общих способах измерения количества информации были сделаны Р. Фишером (1921 г.) в процессе решения вопросов математической статистики. Проблемами хранения информации, передачи ее по каналам связи и задачами определения количества информации занимались Р. Хартли (1928 г.) и X. Найквист (1924 г.). Р. Хартли заложил основы теории информации, определив меру количества информации для некоторых задач. Наиболее убедительно эти вопросы были разработаны и обобщены американским инженером Клодом Шенноном в 1948 г. С этого времени началось интенсивное развитие теории информации вообще и углубленное исследование вопроса об измерении ее количества в частности.

Для того чтобы применить математические средства для изучения информации, потребовалось отвлечься от смысла, содержания информации. Этот подход был общим для упомянутых нами исследователей, так как чистая математика оперирует с количественными соотношениями, не вдаваясь в физическую природу тех объектов, за которыми стоят соотношения. Например, если находится сумма двух чисел 5 и 10, то она в равной мере будет справедлива для любых объектов, определяемых этими числами. Поэтому, если смысл выхолощен из сообщений, то отправной точкой для информационной оценки события остается только множество отличных друг от друга событий и соответственно сообщений о них.

Предположим, нас интересует следующая информация о состоянии некоторых объектов: в каком из четырех возможных состояний (твердое, жидкое, газообразное, плазма) находится некоторое вещество? на каком из четырех курсов техникума учится студент?

Во всех этих случаях имеет место неопределенность интересующего нас события, характеризующаяся наличием выбора одной из четырех возможностей. Если в ответах на приведенные вопросы отвлечься от их смысла, то оба ответа будут нести одинаковое количество информации, так как каждый из них выделяет одно из четырех возможных состояний объекта и, следовательно, снимает одну и ту же неопределенность сообщения.

Неопределенность неотъемлема от понятия вероятности. Уменьшение неопределенности всегда связано с выбором (отбором) одного или нескольких элементов (альтернатив) из некоторой их совокупности. Такая взаимная обратимость понятий вероятности и неопределенности послужила основой для использования понятия вероятности при измерении степени неопределенности в теории информации. Если предположить, что любой из четырех ответов на вопросы равновероятен, то его вероятность во всех вопросах равна 1/4. Одинаковая вероятность ответов в этом примере обусловливает и равную неопределенность, снимаемую ответом в каждом из двух вопросов, и, следовательно, каждый ответ несет одинаковую информацию.

Теперь попробуем сравнить следующие два вопроса: на каком из четырех курсов техникума учится студент? Как упадет монета при подбрасывании: вверх «гербом» или «цифрой»? В первом случае возможны четыре равновероятных ответа, во втором — два. Следовательно, вероятность какого-то ответа во втором случае больше, чем в первом (1/2 > 1/4), в то время как неопределенность, снимаемая ответами, больше в первом случае. Любой из возможных ответов на первый вопрос снимает большую неопределенность, чем любой ответ на второй вопрос. Поэтому ответ на первый вопрос несет больше информации! Следовательно, чем меньше вероятность какого-либо события, тем большую неопределенность снимает сообщение о его появлении и, следовательно, тем большую информацию оно несет.

Предположим, что какое-то событие имеет m равновероятных исходов. Таким событием может быть, например, появление любого символа из алфавита, содержащего m таких символов. Как измерить количество информации, которое может быть передано при помощи такого алфавита? Это можно сделать, определив число N возможных сообщений, которые могут быть переданы при помощи этого алфавита. Если сообщение формируется из одного символа, то N = m , если из двух, то N = m · m = m 2. Если сообщение содержит n символов ( n — длина сообщения), то N = m n . Казалось бы, искомая мера количества информации найдена. Ее можно понимать как меру неопределенности исхода опыта, если под опытом подразумевать случайный выбор какого-либо сообщения из некоторого числа возможных. Однако эта мера не совсем удобна. При наличии алфавита, состоящего из одного символа, т. е. когда m = 1, возможно появление только этого символа. Следовательно, неопределенности в этом случае не существует, и появление этого символа не несет никакой информации. Между тем, значение N при m = 1 не обращается в нуль. Для двух независимых источников сообщений (или алфавита) с NN 2числом возможных сообщений общее число возможных сообщений N = N 1 N 2, в то время как логичнее было бы считать, что количество информации, получаемое от двух независимых источников, должно быть не произведением, а суммой составляющих величин.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Николай Чурсин читать все книги автора по порядку

Николай Чурсин - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Популярная информатика отзывы


Отзывы читателей о книге Популярная информатика, автор: Николай Чурсин. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x