Сергей Попов - Все формулы мира

Тут можно читать онлайн Сергей Попов - Все формулы мира - бесплатно ознакомительный отрывок. Жанр: Прочая научная литература, издательство Литагент Альпина, год 2019. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Сергей Попов - Все формулы мира краткое содержание

Все формулы мира - описание и краткое содержание, автор Сергей Попов, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Галилео Галилею принадлежат слова: «Книга природы написана на языке математики». Спустя почти четыре столетия мы не устаем удивляться тому, что математические методы прекрасно подходят для описания нашего мира. Еще большее изумление вызывают естественнонаучные открытия, сделанные на основе математического анализа уравнений. Создание любой сложной конструкции – от хитроумной дорожной развязки до квантового компьютера – сопряжено с математическими расчетами. Для полноценного понимания действия гравитации или квантовых явлений нам также не обойтись без математики. Но это кажется таким сложным и запутанным! Как перестать бояться формул и полюбить математику? Почему она так эффективна в естественных науках? Есть ли этому предел, или, наоборот, для более глубокого понимания природы придется создавать математические конструкции, уже не укладывающиеся в голове человека? Все эти вопросы затрагиваются на страницах книги, а их художественное осмысление представлено в серии рисунков художника Ростана Тавасиева. На многие из них невозможно найти окончательные однозначные ответы. Но мы продолжаем обсуждать их и пытаемся понять, как устроен этот мир. Для этого понадобится преодолеть разделение на «две культуры»: «гуманитариев» и «естественников». Попробуем сделать еще один шаг в этом направлении.

Все формулы мира - читать онлайн бесплатно ознакомительный отрывок

Все формулы мира - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Сергей Попов
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Предположим, наш объект поглощает все падающее на него излучение (что не совсем точно). Представьте себе концентрические сферы распространения излучения вокруг звезды, начиная с ее радиуса. Разумеется, через каждую сферу проходит одинаковая энергия, т. е. мы можем себе представить, что поверхность звезды испустила какую-то энергию. Затем всю ее поглотила следующая сфера, после чего переизлучила ту же самую энергию дальше. При этом каждая сфера, начиная с поверхности, испускает тепловое излучение. Тогда для их светимости есть простая формула, которую мы уже использовали выше в других приложениях:

Все формулы мира - изображение 109

Напомним, что здесь L – светимость, T – температура, R – радиус сферы.

Чем дальше мы отдаляемся от звезды, тем ниже температура сферы, а значит, и каждого ее элемента. Следовательно, меньше будет и температура маленького поглощающего излучение объекта. Нам надо найти расстояние, на котором температура упадет до величины, соответствующей замерзанию воды [134] На всякий случай напомню, что в протопланетном диске не может быть жидкости, так как давление мало. Поэтому из твердого состояния совершается переход сразу в газ, и наоборот. .

Обозначив температуру поверхности звезды T *, а ее радиус – R *, получим:

Все формулы мира - изображение 110

Можем выполнить упражнение: подставим в формулу температуру и радиус Солнца (5800К и 696 000 км) и получим, что 273К (около ноля по Цельсию) достигается примерно на расстоянии 2 а.е. Параметры молодого Солнца отличались от теперешних, но качественно оценка остается верной: для звезд, похожих на молодое Солнце, снеговые линии находятся (для разных веществ) на расстоянии от 2 до 4 а.е. Соответственно, сразу за снеговой линией должно идти активное формирование планет, потому что там и ледяная пыль уже есть, и плотность вещества еще высока (она уменьшается с удалением от звезды).

Именно за снеговой линией формируются планеты-гиганты. Их ядра успевают быстро набрать массу около 10 земных, и тогда начинается быстрый процесс захвата газа из диска (надо торопиться, звезда своим ультрафиолетовым излучением испаряет диск). А внутри снеговой линии рост планетезималей идет медленнее, да и доступного вещества меньше, поэтому достичь критической массы для начала превращения в газовый гигант не удается. В итоге в Солнечной системе внутри снеговой линии мы видим Меркурий, Венеру, Землю и Марс, а за ней – массивные планеты-гиганты. Приятно, что планеты земного типа образуются как раз в зоне обитаемости! Таким образом, в Солнечной системе мы не видим противоречий с описанным выше сценарием.

Но одно дело – объяснять формирование единственной системы (пусть и очень хорошо изученной), и совсем другое – увязать в целостную картину не только весь комплекс данных по экзопланетам, протопланетным дискам и их звездам, но и наше теоретическое понимание процессов, ответственных за формирование и раннюю эволюцию планетных систем. Сделать это можно только с помощью популяционного синтеза, позволяющего сравнивать созданный нами в компьютере искусственный идеальный мир с миром реальным со всеми его «шероховатостями».

Приложение 8

Падение тела

Задача о падении тела позволяет на достаточно простом примере продемонстрировать, как мы можем улучшать результаты с помощью расчетов на основе все более точных моделей. Мы последовательно рассмотрим три задачи: падение вблизи поверхности Земли в пренебрежении сопротивлением воздуха, падение с очень большой высоты, падение с учетом сопротивления среды.

Первый вариант задачи совсем школьный – движение с постоянным ускорением. Ускорение создается силой земного притяжения и равно:

Все формулы мира - изображение 111

где G – гравитационная постоянная, а M и R – масса и радиус Земли. Тело падает с небольшой высоты h , которая намного меньше R , а потому изменением ускорения можно пренебречь.

Все необходимые формулы приведены в учебнике физики за 9-й класс. За время t скорость будет возрастать на величину gt . При нулевой начальной скорости за время t тело проходит расстояние, равное gt 2/ 2. Откуда берется такая формула, легко представить графически.

Нарисуем график зависимости скорости от времени для равноускоренного движения. Это будет прямая линия. Путь, пройденный за небольшой промежуток времени dt , равен произведению текущей скорости (за маленький интервал времени она не успевает существенно измениться) на dt . Эта величина равна площади вытянутого в вертикальном направлении прямоугольника на графике. Соответственно, весь пройденный путь складывается из суммы таких прямоугольников и, таким образом, равен площади фигуры под линией изменения скорости, представляющей собой треугольник. Его площадь можно вычислить: умножим половину длины стороны на высоту треугольника, опущенную к этой стороне. Сторона равна t , а высота – это конечная скорость, равная gt . Соответственно, время падения с высоты h равно квадратному корню из удвоенной высоты, разделенной на ускорение свободного падения: t = (2 h / g ) 1 / 2.

Теперь рассмотрим более сложный случай – падение с большой высоты, сравнимой с радиусом Земли. В такой постановке ускорение будет меняться, т. е. скорость будет расти все быстрее. Подобный эксперимент можно было бы поставить на Луне, где не мешает атмосфера.

Мы не будем решать задачу до конца путем интегрирования (хотя интеграл там табличный), но зато получим качественную зависимость времени падения от начального радиуса для случая, когда он намного больше радиуса планеты R . Очевидно, что чем дальше мы отходим от поверхности, тем меньше ускорение: a ( r ) = GM / r 2, где r = R + h .

Значит, если мы рассмотрим небольшой интервал времени dt , в течение которого смещение невелико и ускорение меняется слабо, то dr = v ( r ) dt + a ( r ) ( dt ) 2/ 2. Полное время падения с расстояния r будет в основном определяться медленным движением вдали от планеты: там и скорость еще мала, и ускорение невелико. Значит, верхним пределом на время падения будет величина, которую можно получить из уже записанной формулы t = (2 h / g ) 1 / 2. Заменим здесь высоту h на r , а ускорение g – на соответствующую величину a ( r ) = GM / r 2. В итоге мы получим, что при больших расстояниях от поверхности время падения растет как r 3 / 2.

Неплохой оценкой времени падения является отношение начального расстояния r к скорости свободного падения на этом расстоянии: v = (2 GM / r ) 1 / 2. Иными словами, Все формулы мира - изображение 112Такую оценку часто применяют, например, для определения времени падения захваченного из межзвездной среды вещества на нейтронную звезду. Разумеется, точная величина будет несколько меньше, но по порядку величины это очень хорошая простая оценка.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Сергей Попов читать все книги автора по порядку

Сергей Попов - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Все формулы мира отзывы


Отзывы читателей о книге Все формулы мира, автор: Сергей Попов. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x