Алексей Данилов - Популярная аэрономия

Тут можно читать онлайн Алексей Данилов - Популярная аэрономия - бесплатно полную версию книги (целиком) без сокращений. Жанр: Прочая научная литература, издательство Гидрометеоиздат, год 1979. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Алексей Данилов - Популярная аэрономия краткое содержание

Популярная аэрономия - описание и краткое содержание, автор Алексей Данилов, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Впервые в популярной форме, рассказывается об аэрономии - молодой науке, изучающей структуру верхней атмосферы Земли и протекающие там физические и химические процессы. Дается описание современных представлений о структуре атмосферы и ионосферы на высотах 50 - 500 км и проблем, связанных с различными вариациями атмосферных и ионосферных параметров. Подробно излагается современная концепция цикла процессов образования и гибели заряженных частиц, который определяет существование ионосферы.
Книга рассчитана на специалистов в области метеорологии, физики ионосферы и распространения радиоволн, солнечно-земной физики, физики ионно-атомных столкновений, аспирантов и студентов вузов.

Популярная аэрономия - читать онлайн бесплатно полную версию (весь текст целиком)

Популярная аэрономия - читать книгу онлайн бесплатно, автор Алексей Данилов
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Процесс ионизации Формула 3 Здесь X нейтральная частица на которую - фото 18Процесс ионизации. Формула (3)

Здесь X - нейтральная частица, на которую воздействует излучение (квант излучения обозначается hν); X+ - получившийся из X положительный ион и е - отрицательно заряженная частица - электрон.

Для того чтобы произошел процесс (3), надо затратить некоторую энергию. Наименьшая энергия, при которой данная частица X может быть ионизирована, называется потенциалом ионизации данной частицы. Мы будем обозначать потенциал ионизации буквой V и выражать в электронвольтах. Очевидно, что не всякое излучение может вызывать ионизацию. Оторвать электрон от частицы X можно, лишь воздействуя на нее излучением, квант которого hv несет энергию, не меньшую, чем Vх (X показывает, что имеется в виду потенциал ионизации именно частицы X). Длина волны λ (или частота ν), для которой справедливо равенство hν=Vx, называется порогом ионизации частицы X.

Если бы в атмосфере действовал только процесс (3), заряженные частицы накапливались бы непрерывно и концентрация ионов и электронов (будем обозначать ее [Х+] и [е]) бесконечно возрастала бы. Но реально этого, конечно, не наблюдается. Как только образовалось некоторое заметное количество Х+ и е, начинается обратный (по отношению к ионизации (3)) процесс - соединение положительного иона с электроном, приводящее к восстановлению нейтральной частицы, "погибшей" в результате реакции (3):

Врезультате реакции 3 получается формула 4 Такой процесс называется - фото 19Врезультате реакции (3) получается формула (4)

Такой процесс называется рекомбинацией.

На тех высотах, где динамические процессы отсутствуют или их влияние мало, два противоборствующих процесса - ионизация (3) и рекомбинация (4) - определяют количество заряженных частиц, т. е. строение ионосферы. Так обстоит дело в принципе.

На самом деле за каждой из реакций (3) и (4) стоит целый набор различных реакций ионизации и рекомбинации с образованием и исчезновением разных ионов. Кроме того, между реакциями (3) и (4) появляется еще промежуточный процесс - ионно-молекулярные реакции, в которых заряженные частицы не рождаются и не гибнут, а лишь преобразуются друг в друга. Весь этот набор реакций с участием различных ионов и составляет основу фотохимии ионосферы. История же ионосферной физики за последние 15 - 20 лет есть в основном история построения и изучения этого комплекса процессов.

Как от простой схемы двух процессов типа (3) и (4), так называемого слоя Чепмена, перешли к более сложным схемам, в каком столкновении мнений, борьбе идей рождалось представление о всей совокупности реакций ионизации и рекомбинации (так называемом ионизационно-рекомбинационном цикле процессов) - обо всем этом можно прочесть в книге автора "Химия, атмосфера и космос". Здесь мы постараемся рассказать, как выглядит современная схема ионосферной фотохимии и какие особенности поведения ионосферы эта схема может объяснить.

Свое рассмотрение мы начнем с самой простой области ионосферы, расположенной на высотах 100 - 200 км. Эта область считается простой по нескольким причинам. Во-первых, выше 100 км заведомо нет отрицательных ионов, а они, как мы увидим в главе 5, крайне усложняют ионизационно-рекомбинационный цикл. Во-вторых, один из важнейших динамических процессов - амбиполярная диффузия - начинает серьезно вмешиваться в дела ионов и электронов лишь выше 200 км, а в интересующей нас сейчас области она нам никаких неприятностей причинить не может. Третье преимущество указанной области - доступность ее для небольших геофизических и метеорологических ракет. А такие ракеты поставляют весьма ценные экспериментальные данные. В итоге нам есть с чем сравнивать выводы теории. Мы можем эту теорию контролировать и уточнять по надежным данным наблюдений.

В результате всех этих причин область высот 100 - 200 км (будучи сама по себе значительной и важной частью ионосферы стала чем-то вроде полигона для проверки и отработки фотохимической теории образования ионизации в атмосфере. Построенная для высот 100 - 200 км фотохимия применяется затем и к большим высотам (скажем, область максимума слоя F2), где приходится "мирить" ее с динамическими процессами, и к области D, где на нее накладывается специфика отрицательных ионов и ионов-связок.

Главный источник - Солнце

Основной вопрос ионосферной физики - что является первопричиной образования пояса заряженных частиц в верхней атмосфере Земли - уже давно получил ответ. Первопричина появления ионосферы - ионизующее излучение Солнца.

Что значит "ионизующее"? Очевидно, способное вызвать процесс ионизации. Чуть выше мы говорили, что для того чтобы произошел процесс ионизации (3), квант излучения должен иметь энергию не меньше потенциала ионизации частицы X. В роли X в верхней атмосфере могут выступать основные нейтральные компоненты - N2, O2, О. Наименьший потенциал ионизации из них имеет молекулярный кислород - около 12 эВ. Эта энергия соответствует длине волны 1020 Å. Значит, ионизующим излучением в данном случае будет любое ультрафиолетовое и рентгеновское излучение с λ<1020Å. Это верхняя граница.

С нижней границей положение сложнее. Дело в том, что наиболее коротковолновая часть солнечного излучения (λ<30 Å) проходит большую часть ионосферы, почти не поглощаясь, а значит, и не участвуя в создании ионизации. Только на высотах области D, ниже 100 км, это излучение вступает в игру и отдает свою энергию на образование заряженных частиц. Таким образом, выше 100 км ионизацию производит ультрафиолетовое (100 - 1020 Å) и так называемое мягкое рентгеновское (30 - 100 Å) излучение Солнца.

Энергия солнечного излучения, заключенная в интервале длин волн 100 - 1020 Å, как раз и определяет выше 100 км скорость ионизации - тот важный параметр, который мы будем многократно упоминать в этой книге, обозначая его через q. Поскольку в данном случае речь идет о процессе ионизации излучением, этот процесс часто называют фотоионизацией, а соответствующую скорость- скоростью фотоионизации, чтобы отличить от других ионизационных процессов, вызванных, например, корпускулами.

Поясним, что такое скорость ионизации. Проходя через атмосферный газ, ионизующее излучение взаимодействует с его частицами и производит сам процесс ионизации - отрыв электрона от нейтральной частицы. Эффективность этого процесса, т. е. количество актов ионизации (или, что то же, количество образованных при этом пар ион - электрон) в единице объема (см-3) в единичный интервал времени (с-1), и называется скоростью ионизации q.

От чего же зависит величина q? Из сказанного ясно, что она должна быть тем больше, чем больше количество (поток) квантов ионизующего излучения / и чем выше концентрация нейтральных частиц [М] в единичном объеме. Оказывается (это не так очевидно, но очень важно), величина q зависит также от некоторого параметра σ i , называемого эффективным сечением ионизации. Он характеризует, насколько охотно взаимодействует, производя ионизацию, излучение той или иной длины волны с данным видом частиц (скажем, О2 или N2). Итак, скорость ионизации

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Алексей Данилов читать все книги автора по порядку

Алексей Данилов - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Популярная аэрономия отзывы


Отзывы читателей о книге Популярная аэрономия, автор: Алексей Данилов. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x