Алексей Данилов - Популярная аэрономия
- Название:Популярная аэрономия
- Автор:
- Жанр:
- Издательство:Гидрометеоиздат
- Год:1979
- ISBN:5-286-00171-8
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Алексей Данилов - Популярная аэрономия краткое содержание
Книга рассчитана на специалистов в области метеорологии, физики ионосферы и распространения радиоволн, солнечно-земной физики, физики ионно-атомных столкновений, аспирантов и студентов вузов.
Популярная аэрономия - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Две основные реакции
Мы возвращаемся к основному вопросу этой главы: какова судьба ионов после их образования в результате фотоионизации? Раз динамическими процессами на выбранных нами высотах можно пренебречь, следует рассмотреть фотохимические реакции. Двумя главными типами химических процессов на высотах 100 - 200 км являются (кроме фотоионизации) диссоциативная рекомбинация и ионно-молекулярные реакции. О них-то мы и поговорим, прежде чем перейти к общей картине ионных преобразований.
В книге "Химия, ионосфера и космос" подробно рассказано об истории становления взглядов на диссоциативную рекомбинацию молекулярных ионов как быстрый процесс, играющий важную роль в ионосфере Земли и планет. Понадобилось около 20 лет, чтобы от первых предположений английского ученого Бейтса о существовании и роли диссоциативной рекомбинации прийти к современным представлениям об этом процессе.
Итак, диссоциативная рекомбинация молекулярных ионов. Она записывается в виде
Формула 10
При соединении молекулярного иона XY+ с электроном, как и при всякой рекомбинации, выделяется энергия, которая ранее была затрачена на ионизацию. От того, какие есть пути уноса этой энергии, будет зависеть эффективность (константа скорости) данного типа рекомбинационных процессов. В реакциях (6) и (7) энергия уносится либо излучением (отсюда и название "радиативная рекомбинация", (6)), либо третьей частицей М (реакция тройных соударений (7)). Это малоэффективные пути уноса энергии, поэтому и эффективность процессов (6) и (7) мала.
В процессе диссоциативной рекомбинации (10) энергия рекомбинации тоже сначала идет на возбуждение. Но образующаяся молекула нестабильна: она не может удержать полученный запас энергии и распадается на составляющие ее атомы, один из которых в свою очередь может быть возбужден.
Такой путь освобождения энергии, выделяющейся при рекомбинации, более всего удобен природе - константа скорости диссоциативной рекомбинации весьма высока. Если для процесса радиативной рекомбинации (6), как мы видели, константа скорости равна 10-12 см3×с-1, то для процессов диссоциативной рекомбинации основных ионосферных ионов она составляет 10-6-10-7 см3×с-1. Разница в миллион раз и определяет ту важную роль, которую процесс диссоциативной рекомбинации играет в ионосфере как главный рекомбинационный процесс выше 100 км.
Что же мы знаем и чего не знаем сейчас о конкретных процессах диссоциативной рекомбинации?
В ионосфере нас интересует главным образом диссоциативная рекомбинация трех основных молекулярных ионов NO+, О2+ и N2+:
Формула 11
Формула 12
Формула 13
О рекомбинации сложных ионов-связок, наблюдаемых в области D, мы поговорим в одной из следующих глав. Для ионов N2+, О2+ и NO+ было проведено много лабораторных измерений. Трудности таких измерений и забавные случаи, которые при этом возникали, описаны в книге "Химия, атмосфера и космос". К настоящему времени эти трудности преодолены - мы имеем надежные значения констант диссоциативной рекомбинации для наших ионов (обозначим их соответственно αN0+, αО2+ и αN2+) при комнатной температуре (около 300 К):
Формула 14
Однако температура 300 К не характерна для верхней атмосферы. Для интересующих нас высот более характерны температуры 1000 К и выше. Значит, нужно еще знать, как меняются величины α* с температурой. Но тогда возникает следующий вопрос: с какой именно температурой? Ведь в реакции участвуют ион и электрон, а температура ионов и электронов в ионосфере может быть различной. А может, вообще, величины α* зависят от температуры основной массы частиц среды, т. е. от температуры нейтралов?
Полностью этот вопрос не решен и по сей день. При лабораторных измерениях, которые, собственно, и питают нас сведениями о скоростях диссоциативной рекомбинации для различных ионов, получают несколько разную картину изменения α* в зависимости от того, меняют ли в эксперименте только электронную температуру Те при неизменных ионной температуре Ти и температуре нейтралов Тн или увеличивают Те и Ти одновременно. Принято все же считать (и это является основой всех аэрономических расчетов), что в первую очередь величины α* зависят от температуры электронов. Для ионов NO+ и О2+ принимается обратно пропорциональная зависимость α* от Те, а для N2+ зависимость оказалась настолько слабой, что ею часто пренебрегают. Таким образом, в основной части ионосферы мы имеем три процесса диссоциативной рекомбинации (11) - (13) с константами скорости:
Формула 15
Казалось бы, выражения (15) дают нам исчерпывающий ответ на все вопросы, связанные с диссоциативной рекомбинацией молекулярных ионов в ионосфере. На любой высоте, в любых условиях, зная электронную температуру, можно вычислить α* для любого из ионов. И действительно, знание величин α* в виде (15) считалось бы вполне достаточным 10 лет назад. Но, увы, не сегодня - ведь аэрономия не стоит на месте.
На два вопроса мы не получаем ответа, имея выражения (15). Первый - что будет, если ионы находятся в возбужденном состоянии? Все измерения в лаборатории проводятся для невозбужденных ионов. А в ионосфере, как мы теперь понимаем, часть ионов может образовываться с запасом внутренней энергии - возбуждением. Как это отразится на эффективности диссоциативной рекомбинации, мы пока не знаем. Есть лишь общие соображения о том, что величины α* для возбужденных ионов должны быть ниже и могут составлять даже 10-8 см3×с-1. Иначе говоря, возбужденные ионы должны быть более долгоживущими, чем обычные. Если это так, то даже небольшая доля возбужденных ионов (скажем, 10%) может приводить к заметному, в 2 раза, увеличению равновесной концентрации ионов. А это очень существенно.
Второй вопрос тоже связан с возбуждением. Но уже продуктов реакции (11) - (13)-атомов кислорода и азота. В большинстве случаев один или оба продукта диссоциативной рекомбинации должны "быть возбуждены. Но в какое состояние? (Скажем, атом кислорода будет в состоянии 1D или 1S?) И какой из атомов? Пойдет ли реакция диссоциативной рекомбинации NО+ по пути (11) с образованием возбужденного атома азота или по пути NO++е→N + O* С образованием возбужденного атома кислорода?
Читать дальшеИнтервал:
Закладка: