Алексей Данилов - Популярная аэрономия

Тут можно читать онлайн Алексей Данилов - Популярная аэрономия - бесплатно полную версию книги (целиком) без сокращений. Жанр: Прочая научная литература, издательство Гидрометеоиздат, год 1979. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Алексей Данилов - Популярная аэрономия краткое содержание

Популярная аэрономия - описание и краткое содержание, автор Алексей Данилов, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Впервые в популярной форме, рассказывается об аэрономии - молодой науке, изучающей структуру верхней атмосферы Земли и протекающие там физические и химические процессы. Дается описание современных представлений о структуре атмосферы и ионосферы на высотах 50 - 500 км и проблем, связанных с различными вариациями атмосферных и ионосферных параметров. Подробно излагается современная концепция цикла процессов образования и гибели заряженных частиц, который определяет существование ионосферы.
Книга рассчитана на специалистов в области метеорологии, физики ионосферы и распространения радиоволн, солнечно-земной физики, физики ионно-атомных столкновений, аспирантов и студентов вузов.

Популярная аэрономия - читать онлайн бесплатно полную версию (весь текст целиком)

Популярная аэрономия - читать книгу онлайн бесплатно, автор Алексей Данилов
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Сколько в атмосфере атомного азота?

Вопрос о количестве атомов азота, как уже говорилось, весьма важен для всей проблемы окиси азота. Как обе проблемы решаются в совокупности на основе современной фотохимической теории, мы знаем. Всякая теория проверяется экспериментом. Современная схема процессов с участием N и NО дала разумное согласие с результатами измерений [NO] и [N(2D)]. А как с измерениями невозбужденных атомов N?

Оказывается, измерять концентрации N гораздо труднее, чем концентрации тех же атомов в возбужденном состоянии N(2D), хотя последние составляют лишь малую долю N. Причина тут проста: возбужденные атомы излучают запасенную ими энергию, переходя снова в атомы в основном состоянии. В случае N(2D) это будет зеленая линия с длиной волны 5200 Å. Именно ракетные измерения этой линии и дали упоминавшиеся нами данные о распределении [N(2D)] в атмосфере выше 140 км.

Измерение концентрации N А обычные атомы азота Оптическими методами определить - фото 98Измерение концентрации N

А обычные атомы азота? Оптическими методами определить их концентрацию очень трудно. Значит, остается основной метод изучения состава верхней атмосферы - масс-спектрометрический. Именно с ним, вернее, с полученными этим методом результатами и связаны сейчас основные проблемы атомного азота выше 100 км.

Масс-спектрометр регистрирует частицы в соответствии с их отношением массы к заряду. (В случае измерения ионного состава ионы поступают прямо из окружающей атмосферы, так сказать, в готовом виде. Когда исследуется нейтральный состав газа, включается специальный ионный источник, превращающий путем ионизации пучком электронов входящие нейтральные частицы в заряженные, которые и поступают в анализатор прибора.)

За условную единицу принято отношение массы к заряду у атома водорода, поэтому соответствующие массовые числа составляют 1 для Н, 2 для Н2, 14 для N, 16 для О, 28 для N2, 30 для NO, 32 для O2 и т. д.

С помощью масс-спектрометра в принципе можно проводить как абсолютные измерения (т. е. прямо получать количество, скажем, атомов О или молекул N2 в кубическом сантиметре), так и относительные. В последнем случае получают соотношение между концентрациями различных компонент, например тех же О и N2.

Обычно масс-спектрометр выполняет именно относительные измерения.

Все было бы хорошо и никаких трудностей с измерением концентраций N не возникало бы, если бы пик атомного азота на масс-спектрограммах образовывался... только из атомного азота. Выясняется, однако, что это не так. Как показали калибровки в лаборатории на спектрах контрольной смеси, в которой заведомо нет атомов N, а есть лишь N2, тем не менее наблюдается пик с массовым числом 14. Откуда он берется? Видимо, это побочный продукт воздействия электронов ионного источника. В самом приборе происходит разрушение части молекул N2 и образование атомов N, которые не имеют ничего общего с реальным существованием атомного азота в атмосфере.

Атомный азот Лабораторные калибровки дали величины I14I28 порядка 1 3 - фото 99Атомный азот

Лабораторные калибровки дали величины I14/I28 порядка 1 - 3%. Несколько паразитных частиц с М=14 на 100 молекул азота. А на полетных спектрах это отношение, как правило, оказывалось несколько выше (в среднем от 3 до 5 - 6%). Казалось бы, отнести разницу за счет атмосферных

атомов азота - и вот вам готовое отношение [N]/[N2] в атмосфере.

Однако у многих исследователей появились сомнения. Во-первых, несколько процентов от концентрации N2 - это довольно много для атомного азота, особенно в нижней части измерений, в области Е. Скажем, на высоте 130 км 1% от концентрации N2 составляет 1010 см-3. Это много больше, чем дают даже грубые теоретические модели распределения [N]. Во-вторых, отношение I14\I28 обнаружило сильные вариации от эксперимента к эксперименту, то поднимаясь до высоких значений, превосходящих 10%, то опускаясь до лабораторных величин. Как-либо разумно объяснить эти вариации, связать их с изменением состояния атмосферы, не удавалось.

И вот мнения специалистов по масс-спектрометрии разделились. Большинство предпочло воздержаться от анализа данных по I14\I28 и определения по ним количества атмосферного атомного азота.

Однако некоторые исследователи склонны приписывать полученную разницу между лабораторными и наблюдаемыми значениями I14\I28 целиком вкладу атмосферного атомного азота. Естественно, в этом случае получаются высокие [N]/[N2], порядка нескольких процентов, или, что то же (поскольку мы здесь можем считать концентрации N2 известными с хорошей точностью), высокие концентрации атомов азота, на 2, а то и на 3 порядка большие, чем дает современная фотохимическая теория. Можно ли подправить теорию, чтобы получить более близкие к эксперименту значения? Оказывается, нет. Существует принципиальная трудность, связанная реакцией (42). В этой реакции происходит одновременная гибель атомов N и молекул N0. Константа скорости реакции известна из лабораторных измерений и равна 2×10-11 см3×с-1. Помножив концентрацию N на концентрацию NO и на эту величину, мы, естественно, получим скорость гибели N и NО. В условиях равновесия эта скорость должна компенсироваться скоростями образования соответственно атомов N и молекул NО.

Взяв концентрации окиси азота, описанные выше, и концентрации N, измеренные в масс-спектрометрических экспериментах, мы получим очень высокие скорости гибели N и NO. Так, на высотах 150 - 160 км величина [N][NO]α2 будет составлять 104 - 105 см-3×с-1. Это очень много. Никакие известные механизмы (включая и реакцию с возбужденным азотом N (2D)) не способны обеспечить столь высокую скорость образования окиси азота на этой высоте. Аналогичная картина наблюдается и на других высотах, где значения [N] высоки. Чтобы показать, что полученные высокие значения [N][NO]α2 невозможно принять с точки зрения скорости образования N, нам необходимо подробнее рассмотреть вопрос, откуда берется атомный азот.

Действительно, мы рассматривали присутствие в верхней атмосфере атомов азота как нечто заданное свыше, как нечто само собой разумеющееся. Теперь настало время подумать о том, как, в результате каких процессов, появляются в атмосфере атомы N.

Мы знаем, что в атмосфере начиная с некоторых высот активно идет диссоциация молекулярного кислорода. В результате этого процесса, вызываемого солнечным ультрафиолетовым излучением, молекулы O2 распадаются на два составляющих их атома О. Процесс этот идет настолько эффективно, что уже на высотах 130- 140 км концентрации О и O2 сравниваются, а выше кислород в атмосфере присутствует в основном в виде атомов.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Алексей Данилов читать все книги автора по порядку

Алексей Данилов - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Популярная аэрономия отзывы


Отзывы читателей о книге Популярная аэрономия, автор: Алексей Данилов. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x