Алексей Благирев - Big data простым языком [litres]
- Название:Big data простым языком [litres]
- Автор:
- Жанр:
- Издательство:Литагент АСТ
- Год:2019
- Город:Москва
- ISBN:978-5-17-111829-7
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Алексей Благирев - Big data простым языком [litres] краткое содержание
Но насколько глубока кроличья нора? Каждому предстоит разобраться в этом самому. Эта книга поможет донести основные принципы проектирования и создания таких интерфейсов управления бизнесом, обществом и окружающим нас миром посредством Больших данных. Читайте, наслаждайтесь и помните: сожжение книг противозаконно.
Big data простым языком [litres] - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:

Иными словами, по одной из версий управление данными является подмножеством цикла управления информацией, а сами подходы по управлению информацией уже являются подходами по управлению знаниями (Knowledge Management) в организации.
Но стратегия управления данными сама по себе является самостоятельным звеном в этой сложной цепочке. Поэтому, даже не рассматривая всю цепочку управления знаниями, можно с уверенностью сказать, что стратегия управления данными несет в себе самостоятельную ценность.
Утомил? А представьте, что в этом всем копается множество людей, которые в буквальном смысле спорят о дефинициях, правилах и отношениях.
Итак, при построении стратегии, вслед за определением ключевых точек работы с данными, обычно выбирается традиционный путь создания и разработки любой стратегии:
• Определение стратегической позиции – ответ на несколько ключевых позиций во внутреннем и внешнем окружении компании (с точки зрения регулятора, конкурентов, ресурсов и так далее), в том числе декомпозиция и интеграция миссии и ключевых факторов успешности;
• Определение стратегического выбора [24] Например, по модели Johnson и Scholes.
– ответ на несколько ключевых вопросов: как именно организация будет конкурировать? В каком направлении? Как организация достигнет выбранного направления?
• Оценка и выбор стратегии – ответ на выборы по приемлемости предложенной стратегии.
Это основы любого стратегического планирования, которое мы не будем разбирать в этой книге, поэтому про него лучше почитать отдельно. Если собрать все основные подходы, которые в том числе известны мне, то получается следующая картинка:

Ключевые фреймворки при подготовке стратегии данных для организации
1Образована от сокращения шести английских слов: Political (политика), Economic (экономика), Social (общество), Technological (технология), Environmental (развитие) и Legal (законность). Данный анализ направлен на выявление политических, экономических, социальных, технологических и юридических или законодательных аспектов внешней среды, которые могут повлиять на стратегию компании.
2Методика для анализа отраслей и выработки стратегии бизнеса, разработанная Майклом Портером в Гарвардской школе бизнеса в 1979 году. Методикой выделяются пять сил, которые определяют уровень конкуренции и, следовательно, привлекательности ведения бизнеса в конкретной отрасли.
3Методика для анализа бизнеса, фокусирующаяся на доступных ресурсах в конкретной отрасли.
4Матрица Ансоффа представляет собой поле, образованное двумя осями – горизонтальной осью «товары компании» (подразделяются на существующие и новые) и вертикальной осью «рынки компании», которые также подразделяются на существующие и новые.
Одно из ключевых свойств данных, которое необходимо учитывать при проектировании стратегической позиции компании – тот факт, что данные являются не только активом, который необходимо монетизировать, но и обязательством, за которым необходимо крайне внимательно следить во избежание штрафов, издержек или рисков, на которые компания должна аллоцировать соизмеримые резервы.
Перекладывая цикл данных на бизнес-приоритеты (иными словами, декомпозируя бизнес-модель на сильные факторы в текущей конфигурации), получаем следующую матрицу:

Стратегия данных и жизненный цикл данных
Матрица позволяет разобрать на компоненты ключевой путь создания ценности из данных.
Таким образом, всегда есть два типа стратегии, которые будут развиваться:
• Стратегия защиты – сводится к минимизации риска владения данными. Она разворачивается вокруг ключевых активностей, таких как комплаенс, регулирование, выявление мошенничества с данными и других. Защитная стратегия так же ставит ключевой упор на стандартизации, управлении и оперативном выявлении рисков.
• Стратегия нападения – сводится к поддержке роста бизнеса (монетизации, росту конверсии и так далее). Ключевые активности обозначаются как новые знания о клиенте, поддержка решений и маркетинговые кампании.
Конечно, любой организации необходимо следовать обеим стратегиям, но достижение баланса потребует от нее формулирование понимания аппетита к риску – единой позиции организации, так как эти две стратегии будут конкурировать за ресурсы самой организации. Огромное значение в этом будет иметь и размер самой организации, для таких моделей защитная модель всегда выглядит более предпочтительной, а для небольших компаний модель по поддержке роста бизнеса, наоборот, выглядит более преимущественной. Решения по выбору одной или другой всегда создают так называемый trade-off.
В качестве примера можно привести известную трилемму, сформулированную Яном Григгом (Ian Grigg).
Трилемма, сформулированная Ian Grigg в описании концепции Indentity-as-an-Edge. При достижении решения в одной из вершин, остальные вершины теряют ценность. Решение трилеммы подразумевает применение определенных подходов и технологий, например, распределенные реестры (блокчейн).

Трилемма Яна Григга и многомерная стратегия данных
Таким образом, стратегия данных имеет несколько измерений для анализа, каждое из которых необходимо учесть в соответствующей матрице по аналогии с тем, как это сделано для вершин «жизненный цикл», «бизнес ценность», «стратегическая позиция».
Так, по данным HBR [25] .
выявлена, в том числе и зависимость от степени регулирования и выбираемой стратегии.
Ключевые стейкхолдеры
С точки зрения данных как актива, стратегия должна помогать использовать информацию в организации, поэтому основными стейкхолдерами стратегии в первую очередь должны быть зарабатывающие подразделения. С другой стороны, необходимо помнить, что успех во взаимоотношениях с клиентом лежит сегодня в том числе в возможности уметь рассказать о клиенте больше, чем клиент знает о себе сам.
Для данных как обязательства, помимо регулятора, есть еще бизнес-сообщество и клиенты, которым необходимо предоставлять актуальную информацию о соответствии требованиям законодательства. Например, новое европейское законодательство GDPR, вступившее в силу с 31 мая 2018, обязывает организации предоставлять конечным пользователям информацию и инструменты управления их данными.
Читать дальшеИнтервал:
Закладка: