Алексей Благирев - Big data простым языком [litres]
- Название:Big data простым языком [litres]
- Автор:
- Жанр:
- Издательство:Литагент АСТ
- Год:2019
- Город:Москва
- ISBN:978-5-17-111829-7
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Алексей Благирев - Big data простым языком [litres] краткое содержание
Но насколько глубока кроличья нора? Каждому предстоит разобраться в этом самому. Эта книга поможет донести основные принципы проектирования и создания таких интерфейсов управления бизнесом, обществом и окружающим нас миром посредством Больших данных. Читайте, наслаждайтесь и помните: сожжение книг противозаконно.
Big data простым языком [litres] - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:

Современный исследователь данных по версии MarketingDistillery
Помимо навыков из области математики или статистики, специалист в обязательном порядке должен обладать навыками, позволяющими ему уметь настраивать среду, загружать и обрабатывать данные и подготавливать датасет к исследованиям.
Кроме специалиста по исследованиям необходимы специалисты по контролю и качеству данных, бизнес-аналитики, архитекторы данных, разработчики информационных потоков и сервисов и так далее.
При всем обещающем многообразии компетенций и навыков встает открытый вопрос: к кому из бизнес-лидеров должна относится стратегия данных. Один из традиционных взглядов, преобладающий в большинстве компаний, выглядит следующим образом:
• Финансовый директоротвечает за стратегию данных и имеет специальное подразделение, которое выступает заказчиком и контролирует качество данных для всех остальных подразделений.
• IT-директоротвечает за реализацию, наполнение и сбор данных в соответствии с выставленными требованиями (SLA, OLA и так далее).
В такой конфигурации возникает несколько коллизий при работе с данными:
• Финансовое подразделениеоперирует размерностями данных, которые в первую очередь будут покрывать потребности подразделения, входящие в зону его ответственности перед внешними инвесторами (МСФО отчетность, Investor Relations и другие). В этом смысле многомерная и сложная бизнес-сущность организации представляется в виде плоского отчета, во много отвечающего ограниченному количеству аналитических задач.
• IT-подразделениене берет на себя ответственность за качество данных в источниках. Помимо этого, гармонизация источников данных также требует приложение сверхусилий [38] Например, создания единой канонической модели данных для передачи по интеграционному слою для всех источников данных внутри организации.
.
Решать такие коллизии призвана модель офиса CDO (Chief data officer) в прямом подчинении CEO, в котором появляются ряд новых профессий и ролей – например, data engineer [39] В статье Laurel Brulk, эксперт в области данных и маркетинга, указывает на особенности профессии data engineer.
[40] .
или data architect. Они вместе с CDO проектируют и внедряют ряд ключевых артефактов, на которых будет строиться стратегия управления данными. Это могут быть:

Восприятие организации с помощью данных

Отличие инженера данных от исследователя данных
• Единая бизнес модель и единая модель данных.
• Аппетит к риску на основании.
• Data Quality и так далее.
В своей основе data engineers имеют ряд отличительных особенностей от data scientists, если поставить их в один ряд, то можно сказать, что data engineers больше занимаются самими данными, нежели поиском инсайтов из них. Их задача – следить, проектировать и организовывать бесконечные потоки данных, структурируя и валидируя их для конечного пользователя.
Self-service BI
Отдельно стоит рассмотреть экосистему Microsoft, организованную для двухсот тысяч сотрудников корпорации, и предоставляющую все необходимое для работы с данными. Вызовы, на которые отвечает эта экосистема, сопоставимы с задачами по трансформации культуры, стоящими перед крупнейшими корпорациями.
Команда Microsoft выделила пять видов особенностей в реализации стратегии данных:
• Заменить стратегии оценки эффективности внедрения BI средств на стратегии возможности взамен того, чтобы пытаться оценить ROI от проектов, связанных с данными, организация должна перейти к пути оценки возможностей применения данных.
• Перейти от управления изменения (Change Management) к модели потребления данных. Сервисы на данных – это продукт, у которого есть свой потребитель. Технологическая организация должна полностью сфокусироваться на потреблении технологических продуктов.
• Сфокусироваться вокруг кривой использования BI-инструментов и ранних последователях (Early Adopters), так как они являются самыми важными бизнес-пользователями, которые будут потреблять тот или иной сервис.
• Структурировать инструменты поддержки для каждой группы пользователей с точки зрения канала коммуникации, поддержки продукта, общего видения развития сервиса и так далее.
• Сформировать экосистему поддержки инноваций и работы с данными с вовлечением социальных сетей, каналов коммуникаций, партнеров и поставщиков данных, создавая возможность быстрого масштабирования.

Инфраструктура Microsoft по поддержке развития BI-сообщества
Итак, комплексность взгляда Microsoft на управление культурой данных в больших корпорациях показывает, что помимо трансформации понимания роли данных (перед от ROI и других показателей к оценке возможностей), от организации требуется также глубокая и детальная проработка инструментов поддержки жизненного цикла данных, сегментации потенциальных потребителей и выделение ресурсов на продвижение и поддержку каналов.
В этом смысле управление и развитие таких инициатив сопоставимо с развитием и созданием нового бизнеса, где данные и сервисы на них являются продуктом, а пользователи становятся полноценными потребителями.

Путь формирования культуры работы с данными, по версии компании Microsoft
Известная кривая Мура [41] Непрерывная фрактальная заполняющая пространство кривая, являющаяся вариантом кривой Гильберта.
определяет группы пользователей по взаимодействию с технологией. Ею пользуются большинство компаний в Силиконовой Долине, потому что она содержит ключевую подсказку.
Все пользователи делятся на две группы по пятьдесят процентов. Первая группа имеет явно выделенные внутри три подгруппы:
• Инноваторы– они составляют всего два с половиной процента от общего количества возможных конечных пользователей аналитического продукта. Они ищут новые знания, хотят попробовать новые технологии, им важно влиять и менять новые, зарождающиеся технологии.
• Ранние последователи – их уже больше тринадцати с половиной процентов от общего количества возможных конечных пользователей. Они являются визионерами, поэтому не будут обращать внимания на «шероховатости» аналитического продукта. Тут возникает знаменитое правило шестнадцати процентов о том, что первая часть аудитории быстро соглашается на изменения, поэтому им легче «продать» или объяснить новые технологии и подходы. Культура работы с данными в этом – не исключение, как показал пример Microsoft. После шестнадцати процентов возникает так называемый «Разрыв», а именно, бетонная стена, в которую врезаются все инноваторы, так как следующая категория ребят уже хочет работающий аналитический сервис, а значит, они не готовы больше проглатывать все шероховатости.
Читать дальшеИнтервал:
Закладка: