Алексей Благирев - Big data простым языком [litres]

Тут можно читать онлайн Алексей Благирев - Big data простым языком [litres] - бесплатно ознакомительный отрывок. Жанр: Прочая научная литература, издательство Литагент АСТ, год 2019. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Алексей Благирев - Big data простым языком [litres] краткое содержание

Big data простым языком [litres] - описание и краткое содержание, автор Алексей Благирев, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Наш телефон знает о нас больше, чем мы думаем. Он умеет собирать и анализировать информацию о том, как мы передвигаемся по городу, какие посты лайкаем и какими приложениями пользуемся. Он сообщит о пробках и поторопит на работу, чтобы мы не опоздали; подберет музыку под наше настроение и составит список персональных рекомендаций, чем можно занять себя в течение дня. Телефон – больше не устройство, по которому звонят, это уже средство управления окружающим нас миром. Незаметно мы окружили себя такими интерфейсами, которые создают невидимый барьер между человеком и окружающей средой. Планирование, управление, коммуникация, все теперь строится через эти программы и девайсы. Даже человеческие отношения.
Но насколько глубока кроличья нора? Каждому предстоит разобраться в этом самому. Эта книга поможет донести основные принципы проектирования и создания таких интерфейсов управления бизнесом, обществом и окружающим нас миром посредством Больших данных. Читайте, наслаждайтесь и помните: сожжение книг противозаконно.

Big data простым языком [litres] - читать онлайн бесплатно ознакомительный отрывок

Big data простым языком [litres] - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Алексей Благирев
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

• Архитектор решений (solution architect)

• Руководитель проекта (project manager)

• Исследовать данных (data scientist)

• Руководитель проекта (project lead)

С другой стороны, для извлечения максимальной ценности и получения адаптивного к моменту процесса управления данными, появилась методология DEVOPS, которая была сформулирована Энди Палмером ( Andy Palmer [51] . ), СЕО и сооснователем компании TAMR (ранее – основатель компании Vertica).

По его мнению, на ее распространение повлияло несколько ключевых факторов:

• Демократизация аналитики – сегодня все больше людей по всему миру работают с аналитикой.

• Создание специальных баз данных (Vertica, VoltDB, StreamBase, BigTable) под задачи – реляционные базы данных устарели, и сегодня одно решение не подходит для любых задач.

Процесс поиска инсайта по версии Microsoft С одной стороны решения перестали - фото 24

Процесс поиска инсайта по версии Microsoft

С одной стороны, решения перестали быть универсальными, с другой – решения должны иметь стандартные интерфейсы (API) для интеграции различных решений. Вместе эти тенденции создают «давление с обоих концов технологического стека».

В верхней части стека – все больше пользователей хотят получить доступ к большему количеству данных в большем количестве комбинаций. А на дне стека – сейчас доступно больше данных, чем когда-либо, и лишь некоторые из них агрегированы.

Единственный способ для профессионалов данных справиться с давлением неоднородности как сверху, так и снизу стека состоит в том, чтобы использовать новый подход к управлению данными. Он объединяет операции и сотрудничество для организации и доставки данных из многих источников, надежно совместимым с происхождением необходимых для поддержки воспроизводимых потоков данных.

Сегодня инфраструктура, необходимая для поддержки количества, скорости и разнообразия данных, имеющихся на предприятии, радикально отличается от того, что предполагали традиционные подходы к управлению данными. Характер DataOps включает в себя необходимость управления многими источниками данных и многопотоковыми конвейерами данных с широким спектром преобразования.

DataOps по версии Эндрю Палмера Звучит адски сложно но тем не менее это факт - фото 25

DataOps по версии Эндрю Палмера

Звучит адски сложно, но тем не менее это факт.

Выбор подхода по организации работы с загрузкой, обработкой и агрегацией данных для разного количества данных будет зависеть от многих факторов, которые могут быть индивидуальны для организации. Например, если количество источников данных мало, и они контролируются централизованно со стороны организации, то DataOps как подход избыточен. Но если у организации множество источников данных, различные потребители, потребности в аналитических сервисах и нет возможности проконтролировать сам источник, то единственным эффективным решением по организации работы команды будет DataOps.

Глава 3 Storytelling с данными Когда ты уже сделал большую работу повозился с - фото 26

Глава 3

Storytelling с данными

Когда ты уже сделал большую работу, повозился с базами данных, нашел и обработал эти данные, то остается, как ни странно, самое сложное – умение их правильно показать.

Многим не составляет труда вылить на голову другому человеку результаты своего анализа. Вроде все правильно, но ощущение что тот ни черта не понял. И это очень частая проблема. Мне даже порой кажется, что эта проблема стоит выше всех остальных проблем, которые возникают при работе с данными.

По сути, ведь как – постороннему человеку должен быть понятен не только результат ночных блужданий по данным, но и то, что этот результат из себя представляет. И тут, как говорится, одного рецепта нет на всех, но я постарался структурировать лучшие практики и выделить только самое ключевое.

Итак, демонстрация результата работы с данными – один из важнейших этапов извлечения ценности из данных, который включает в себя визуализацию, описание предмета исследования и самих данных [52] . .

В одном из подходов, сформулированных известным экспертом в области данных, Брентом Дюксом [53] Известный консультант в области данных, который проработал в различных компаниях таких как Adobe, Test&Target и других. , успешность представления данных зависит от того, насколько будет хорошо структурирован контекст в отношении той или иной аудитории.

Аудитория как таковая не воспринимает сухие цифры. Совсем. Нужно рассказать про принцессу, показать, как она убила дракона и спасла рыцаря, ну или наоборот.

В общем, нужна драма, чтобы вызвать взаимный интерес у людей, когда им все равно, что ты будешь рассказывать.

Аналитические отчеты, информационные записки или аналитическое прикрытие для этого мало эффективно. Люди хотят быть частью рассказа, поэтому при формулировании представления, демонстрации или презентации, упор нужно сделать вокруг так называемого «Aha Moment» – момента, в котором каждый из слушателей начинает воспринимать себя неотъемлемой частью рассказа.

Так, по данным исследований нейрофизиологов [54] Антонио Дамассио. [55] . ,оказалось, что в основе эффективных решений лежит не логика, а эмоции. И это факт. Ведь есть же целое исследование.

Что такое Data Storytelling В условиях неопределенности и волатильности на - фото 27

Что такое Data Storytelling

В условиях неопределенности и волатильности на смену взвешенному интеллекту приходит эмоциональная оценка ценности того или иного события. То есть люди начинают в первую очередь переживать, когда вокруг наступает полнейший хаос. Если коротко, один из основных принципов звучит следующим образом: «Если что-то доставляет больше радости или делает вас сильно несчастными, оно будет оценено совершенно иным образом, нежели логическая цепочка рассуждений». Значит, это нужно использовать!

Истории меняют работу головного мозга [56] . . Такие зоны как область Вернике [57] . , а также Центр Брока [58] . вовлечены в то, как мы распознаем текст. В частности, при чтении слов возникает не просто ассоциативный ряд, но и подключаются другие регионы головного мозга, например, отвечающие за обоняние, если читатель прочел, скажем, слово «кофе» или «секс». В этом случае читатель подумал про конкретную ассоциацию, доставляющую ему удовольствие.

Итак, когда люди читают «голые» цифры, на самом деле, они ощущают истории. Все это ведет к нескольким очень важным аспектам, таким как:

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Алексей Благирев читать все книги автора по порядку

Алексей Благирев - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Big data простым языком [litres] отзывы


Отзывы читателей о книге Big data простым языком [litres], автор: Алексей Благирев. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x