Алексей Благирев - Big data простым языком [litres]

Тут можно читать онлайн Алексей Благирев - Big data простым языком [litres] - бесплатно ознакомительный отрывок. Жанр: Прочая научная литература, издательство Литагент АСТ, год 2019. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Алексей Благирев - Big data простым языком [litres] краткое содержание

Big data простым языком [litres] - описание и краткое содержание, автор Алексей Благирев, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Наш телефон знает о нас больше, чем мы думаем. Он умеет собирать и анализировать информацию о том, как мы передвигаемся по городу, какие посты лайкаем и какими приложениями пользуемся. Он сообщит о пробках и поторопит на работу, чтобы мы не опоздали; подберет музыку под наше настроение и составит список персональных рекомендаций, чем можно занять себя в течение дня. Телефон – больше не устройство, по которому звонят, это уже средство управления окружающим нас миром. Незаметно мы окружили себя такими интерфейсами, которые создают невидимый барьер между человеком и окружающей средой. Планирование, управление, коммуникация, все теперь строится через эти программы и девайсы. Даже человеческие отношения.
Но насколько глубока кроличья нора? Каждому предстоит разобраться в этом самому. Эта книга поможет донести основные принципы проектирования и создания таких интерфейсов управления бизнесом, обществом и окружающим нас миром посредством Больших данных. Читайте, наслаждайтесь и помните: сожжение книг противозаконно.

Big data простым языком [litres] - читать онлайн бесплатно ознакомительный отрывок

Big data простым языком [litres] - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Алексей Благирев
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

◦ Температура – в зависимости от продвижения армии, указано снижение температуры.

◦ Время – все данные соотносятся с временной шкалой.

• Круговая диаграмма о количестве смертей в Крымской войне, которую подготовила сестра милосердия и общественная деятельница Великобритании Фроленс Найтингейл. В своих трудах она впервые использовала круговые диаграммы, тем самым став их изобретателем. Она подготовила эти диаграммы, чтобы показать, сколько смертей можно было избежать, если заниматься профилактикой и лечением заболеваний раненных солдат, которые подвергались двойному риску с попаданием в госпитали. На рисунке выделен размер смертности, который наступал от болезней или инфекций уже в госпиталях, куда попадали раненые солдаты. Диаграмма сестры Найтингейл конкретна, наглядна и имеет четкий «call to action», но она не идеальна, как утверждает журнал Economist. Так, каждый из цветных клиньев измеряется из центра, поэтому частично закрывает друг друга (вот только эта книга черно-белая, поэтому советую найти диаграмму в Интернете). В дополнении число смертей не указано, хотя это был относительный размер. Но даже несмотря на это, данная инфографика была включена в отчет комиссии по проблемам здоровья в армии, и оказала положительное воздействие на принимаемые решения.

Диаграмма причин смертности в Армии на Востоке Экономические диаграммы и - фото 29

Диаграмма причин смертности в Армии на Востоке

• Экономические диаграммы и чарты шотландского инженера и основателя графических методов статистики Уильяма Плейфэра. Плейфэр изобрел линейчатый график и гистограммы для представления данных. Ряд его диаграмм отражает торговый баланс для Англии. Он был первым, кто показал размеры и экспорт на одном графике, сформулировав тезис о влиянии сдвига торгового баланса на уровень развития той или иной страны.

Один из самых известных его графиков отражает еженедельную заработную плату хорошего механика. Этим графиком он пытался пояснить связь себестоимости пшеницы и стоимости механистического труда. Один из выводов графика: стоимость пшеницы сегодня стала несоизмеримо мала с переходом к механистическому труду. Использование Плейфэром горизонтальной и вертикальной осей для представления времени и денег стало новшеством для того времени. Он был первым, кто использовал данные не только для того, чтобы информировать, но и для того, чтобы убеждать принимать решения и проводить кампании.

График роста заработной платы хорошего механика Импорт и экспорт для Дании и - фото 30

График роста заработной платы хорошего механика

Импорт и экспорт для Дании и Норвегии с 1700 по 1780 Самые громкие районы - фото 31

Импорт и экспорт для Дании и Норвегии с 1700 по 1780

• Самые громкие районы Нью-Йорка. В своей статье [71] . в январе 2015 в журнале The NewYorker известный аналитик, преподаватель Института Пратта [72] . и автор проекта I Quant NY (Я считаю NY), Бен Веллингтон, используя публичные данные, определил худшие для проживания районы Нью-Йорка по уровню шума. Проанализировав за несколько лет все обращения по уровню шума среди жителей мегаполиса, Бен категоризировал все обращения жителей по темам и по географии, определив районы с наиболее высоким уровнем шума. Самым шумным стал район Мидтауна Манхэттена, где среди лидеров раздражения были строительные работы, вечеринки, громкая музыка и громкие разговоры. Статья вызвала большой резонанс в обществе, на что Департамент полиции и Департамент защиты окружающей среды взяли на себя обязательства разработать индивидуальные решения для различных районов города. С наглядным результатом анализа Веллингтона можно ознакомиться здесь:

Не благодарите Декодирование аналитического контента требует усилий В 1984 - фото 32

Не благодарите.

Декодирование аналитического контента требует усилий

В 1984 Уильям Кливленд и Роберт МакГил, известные исследователи в области статистики, в своей работе «Восприятие графики» [73] . (журнал Американской Ассоциации Статистики, № 79 от 1984) выявили, что человек очень плохо интерпретирует ряд объектов и форм, если с их помощью отражается аналитическая информация. Их исследование стало одним из первых, структурирующих подход в восприятии человеком аналитической информации.

Трехмерные объекты, углы, кривые или окружности – все это крайне сложно понять, а затем еще и интерпретировать количественные данные при наблюдении за аналитическим отчетом. Выбор фреймворка и паттерна для визуализации оказывает крайне сильное влияние на возможность человека декодировать аналитический контент, который ранее был подготовлен с использованием данных.

Например, какое из чисел больше? А или B? Насколько оно больше?

Восприятие большего числа МасГил Для большинства очевидно что число В - фото 33

Восприятие большего числа – МасГил

Для большинства очевидно, что число В больше, чем А в два небольшим раза.

Сравнение объектов А теперь попытайтесь быстро ответить какое из делений - фото 34

Сравнение объектов

А теперь попытайтесь быстро ответить, какое из делений больше, и как именно они соотносятся друг с другом в процентном выражении?

В своем исследовании МакГил указывает, что человек принимает решение о декодировании аналитической информации быстро, используя интуицию, без погружения в сложные расчеты.

Сложность сравнения длины делений для разной позиции В первом случае так как - фото 35

Сложность сравнения длины делений для разной позиции

В первом случае, так как деления находятся на общем уровне, человек делает свой вывод с использованием общего уровня. Во втором случае нельзя использовать общий уровень, для сравнения размеров потребуется провести ряд аналитических расчетов для того, чтобы измерить, как именно отличается высота делений.

Кливленд и МакГил рассмотрели пять примеров чартов и провели исследование с привлечением студентов и преподавателей соответствующих направлений. Все собранные ответы они разделили на правильные и неправильные и измерили размер допущенной ошибки в зависимости от того, как именно располагались сравниваемые деления чартов по отношению друг к другу на каждом из пять чартов.

Оказалось, что чем ближе друг к другу сравниваемые деления, тем выше точность декодирования аналитического контекста со стороны человека, а чем деления дальше друг от друга, тем вероятнее рост ошибки. Когнитивное восприятие имеет свой заданный шаблон в зависимости от типа используемых чартов. Для чартов, где находятся деления, которые нужно сравнить, человек по умолчанию ищет сравнение в отношении общей линии или позиции. Если человек видит карту, то включается шаблон анализа насыщенности цветом, который используется на карте.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Алексей Благирев читать все книги автора по порядку

Алексей Благирев - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Big data простым языком [litres] отзывы


Отзывы читателей о книге Big data простым языком [litres], автор: Алексей Благирев. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x