Алексей Благирев - Big data простым языком [litres]
- Название:Big data простым языком [litres]
- Автор:
- Жанр:
- Издательство:Литагент АСТ
- Год:2019
- Город:Москва
- ISBN:978-5-17-111829-7
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Алексей Благирев - Big data простым языком [litres] краткое содержание
Но насколько глубока кроличья нора? Каждому предстоит разобраться в этом самому. Эта книга поможет донести основные принципы проектирования и создания таких интерфейсов управления бизнесом, обществом и окружающим нас миром посредством Больших данных. Читайте, наслаждайтесь и помните: сожжение книг противозаконно.
Big data простым языком [litres] - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
• Штрафы за оплаченные парковки – в Нью-Йорке парковать автомобиль можно было только на специально отведенных местах. В 2009 году Администрация внесла изменения в правила парковки и разрешила оставлять автомобили рядом с пожарными гидрантами, возле которых было свободное место. В своем исследовании Бен обнаружил серию регулярно выдаваемых на протяжении нескольких лет штрафов в местах, где стояли гидранты, но не было запрещающей стоянку разметки. Иными словами, огромное количество штрафов на сумму более 1,7 миллиона долларов было выписано нелегально, так как автомобиль находился в разрешенной зоне парковки. Таких зон было выявлено порядка 1966. Происходило это потому, что большая часть сотрудников полиции проигнорировала изменения законодательства в 2009 году. Администрация признала ошибку, допущенную патрульными службами, сформировав дополнительный фокус на переобучение патрульных служб. Вскоре была проведена корректировка разметки во всех выявленных местах.
• Самая грязная вода в Нью-Йорке – сведение статистики по самым грязным водоемам в городской черте. На портале открытых данных Нью-Йорка находился реестр с анализами данных по водоемам за несколько месяцев. Для проведения подробного анализа понадобился полный массив данных, который находился на отдельном сайте Департамента охраны окружающей среды. Данные были разбиты на много раздельных Excel-реестров с различными заголовками, которые нужно было свести вместе. Уровень загрязнений существенно превышал норму, в самых грязных районах превышение нормы было многократным. С вероятностью в 94 процента купание в водоеме могло привести человека к летальному исходу. Одним из таких мест оказалось Coney Island Creek. В результате, Бен опять привлек внимание Администрации и Департамента защиты окружающей среды. Он выписал ряд крупнейших штрафов по 400 тысяч долларов комплексу апартаментов, находящемуся в зоне загрязнения, большая часть из которых была направлена в Фонд защиты дикой природы. Тем не менее сообщество разделилось, требуя увеличить размер штрафов в десятки раз, доведя его до четырех миллионов долларов, аргументируя это тем, что уровень ущерба от загрязнения выше, чем размер штрафов.
Итак, каждая история – это большая проделанная работа по обработке, анализу, гармонизации и нормализации данных. В процессе выполнения сложной и рутинной работы всегда снижаются ожидания от аудитории, которая думает, что ничего важного не произойдет после демонстрации результатов. Но это не так.
Любые изменения происходят медленно, но они происходят, если есть для этого стимул. Выявить этот стимул и отразить в своей работе – ключевая задача Data Journalizm.
Глава 4
Регулирование данных
Р – регулирование.
Данные и капитализм.
Штука бесполезная и беспощадная во всех отношениях. Ценности в регулировании де-факто мало, оно лишь снижает скорость развития в цифровой экономике.
Нет однозначной истории, как же регулировать данные.
Во-первых, с юридической точки зрения надо определить, что такое данные. А с этим не только в нашей стране беда, но и в международном пространстве нет единства и понимания по таким вопросам.
В США, например, нет законов, прямо регулирующих Большие данные. Иными словами, ты можешь пострадать, только если косвенно затронешь чьи-то интересы, и они это докажут.
В самом начале я говорил, что есть две стратегии работы с данными:
1. Либо нападение – то есть используем те данные, которые есть, с целью побольше заработать.
2. Либо защита – сидим на данных, никому не даем и защищаемся от всячески возможных рисков и возникающих сложностей.
Итак, родина капитализма, конечно же, предпочла первый вариант. Что там делают с вашими данными – похоже на какофонию и безумную спонтанную оргию организаций, которых вместе никто не собирал и к сотрудничеству не приглашал.
Конечно, есть небольшие исключения, и это хорошо. Они как раз структурируют и задают общий тон того, что делать можно, а что – не очень.
Кстати, именно в США в 2010 году был известный скандал в магазинах Target [83] .
, когда их точнейшие аналитические алгоритмы определили, что несовершеннолетняя школьница ждет ребенка. Конечно, первым прибежал ее отец и чуть не поубивал менеджеров Target за непристойный контент и предложения школьнице рожать.
А все началось с Эндрю Пола, который в 2002 году работал статистиком в Target. К нему подошли его коллеги и спросили его, «может ли он выяснить, беременный покупатель или нет, даже он не хочет, чтобы мы как магазин знали?».
Эндрю имел магистерскую степень по статистике и еще одну – по экономике, и, конечно же, был повернут на анализе поведения пользователей с использованием данных.
Спустя 16 лет с того безумного вопроса, ответ на который сделал Эндрю Пола мегазнаменитым и успешным гостем выпусков новостей и ток-шоу в связи с эпичным скандалом, он ушел из ритейла в банкинг. Он вышел работать вице-президентом по персонализированной аналитике в пятый по величине банк США, USBank. Чем-то похоже на наш топ-5 банк, за одним исключением, что USBank ровно в десять раз больше, чем банк, находящийся на 5 месте в РФ, и даже больше, чем известный банк находящийся на первой строчке рейтинга в России. В USBank Эндрю будет развивать совершенно новое направление. Кстати, Target – это пятый по величине ритейлер в США, так что тенденция у Эндрю на лицо.
Но вернемся назад, в начало 2000-х. Сакральная мысль позади идеи взлома и анализа поведения беременных покупателей была крайне простой – молодые родители, считались Священным Граалем для сети Target. Обычно покупатели не берут все в одном магазине, они покупают везде понемногу. При этом, сеть Target продавала все виды товаров: от питания до мебели.
И, конечно, их главная мысль была стать брендом первого выбора, чтобы за любым предметом люди шли в Target. Абсолютно такая же крамольная идея лежит и в головах банкиров – стать банком первого выбора, чтобы везде платили только их карточкой.
Как мыслили тогда маркетологи: обычно человек в рутине, и до него сложно достучаться. Есть только несколько моментов в жизни, когда эта обыденность отступает, – покупатель прислушивается и готов покупать все подряд. Один из таких моментов – рождение ребенка. Тогда родители готовы перевернуть магазин вверх дном, чтобы найти самую крутую колясочку и самую прикольную кроватку. Другие события, когда человек выныривает из рутины, – например, когда слышит любимую музыку.
И тут великие маркетологи сказали Эндрю, что важен момент. А именно, момент до рождения, который потом будет занесен во все публичные источники и базы данных. Нужно ловить пап и мам тогда, когда их чадо еще не увидело свет. Было бы идеально, если бы Эндрю смог разработать модель, позволяющую вычислять второй триместр беременности, чтобы приклеить к себе покупателя на годы.
Читать дальшеИнтервал:
Закладка: