Алексей Благирев - Big data простым языком [litres]

Тут можно читать онлайн Алексей Благирев - Big data простым языком [litres] - бесплатно ознакомительный отрывок. Жанр: Прочая научная литература, издательство Литагент АСТ, год 2019. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Алексей Благирев - Big data простым языком [litres] краткое содержание

Big data простым языком [litres] - описание и краткое содержание, автор Алексей Благирев, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Наш телефон знает о нас больше, чем мы думаем. Он умеет собирать и анализировать информацию о том, как мы передвигаемся по городу, какие посты лайкаем и какими приложениями пользуемся. Он сообщит о пробках и поторопит на работу, чтобы мы не опоздали; подберет музыку под наше настроение и составит список персональных рекомендаций, чем можно занять себя в течение дня. Телефон – больше не устройство, по которому звонят, это уже средство управления окружающим нас миром. Незаметно мы окружили себя такими интерфейсами, которые создают невидимый барьер между человеком и окружающей средой. Планирование, управление, коммуникация, все теперь строится через эти программы и девайсы. Даже человеческие отношения.
Но насколько глубока кроличья нора? Каждому предстоит разобраться в этом самому. Эта книга поможет донести основные принципы проектирования и создания таких интерфейсов управления бизнесом, обществом и окружающим нас миром посредством Больших данных. Читайте, наслаждайтесь и помните: сожжение книг противозаконно.

Big data простым языком [litres] - читать онлайн бесплатно ознакомительный отрывок

Big data простым языком [litres] - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Алексей Благирев
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Как облагать налогом платные сервисы, которые строятся на открытых данных?

Вернемся к тенденциям, нормам, привычкам и традициям пользователей. Опираясь на опыт Поднебесной, стоит явно отметить, что драйвером регулирования должен быть в первую очередь продукт с использованием данных, которые сегодня уже во многом представлены алгоритмами с использованием машинного обучения.

Наиболее популярные алгоритмы, которые стоит рассмотреть в регулировании:

Рекомендация и оптимизация контента– такие платформы как Spotify, Netflix, Amazon, Ozon используют алгоритмы, которые постоянно наблюдают за нами. Они исследуют, как долго, часто и что именно мы смотрим, что нам нравится. Алгоритмы могут анализировать картинку, могут дать описание к ней, могут спроектировать картинку на основании наших любимых фильмов и актеров, чтобы продать нам новую услугу или товар.

Высокочастотный трейдинг– такие специальные алгоритмы, которые перехватывают запросы пользователя, совершают покупку за тысячные доли секунды и продают их обратно пользователю, но с небольшой накруткой. Некоторые эксперты рынков капиталов называют HFT (высокочастотный трейдинг) паразитами, так как при выставлении ордеров пользователь фактически не может купить по текущей цене с рынка тот или иной инструмент. Рекомендую изучить историю ребят Investors Exchange [94] Flash Boys: Высокочастотная революция на Уолл-Стрит. Автор: Майл Льюис, 2014 год. – они первые, кто придумал биржевую площадку, где нет таких пакостных посредников.

Реклама– все поведенческие паттерны строятся на куках, ваших специальных идентификаторах внутри Интернета. Выбрали книгу в электронном магазине о криптовалюте, передумали и ушли, потом зашли на видеохостинг, а в стоке вам показывают фильмы про криптовалюту. Совпадение? Не думаю. В Интернете как таковом нет своей памяти, но есть куки. Куки представляют собой ячейку памяти, только эту память видят все участники Интернета. Все рекламщики используют ваши куки, вы даже можете об этом не знать. Более того, они подсовывают свои собственные куки в ваши куки, чтобы сказать всем своим партнерам, что вы были у них. Существует много трекинговых методов, например флэш-куки, которые сложно удалить. Не всем хочется, чтобы кто-то знал, как в случае с Target, что вы ждете ребенка раньше, чем об этом узнают ваши близкие.

Поисковые запросы– представьте, что выборы близко, а вы гипотетически никак не определились (опустим, что все уже предрешено). Попробуем перенестись в мир неограниченных возможностей и представить, что ваш голос еще по-прежнему учитывают. Вы вбиваете в поисковике имя потенциального кандидата [95] . , и вот уже сотни разных ссылок показывают информацию по этому человеку. И вроде бы все круто – теперь вы проинформированы, а значит, вооружены. Но представьте на минутку, что вам показывают один мусор, только плохие статьи и прочую грязь, так как именно в этот момент алгоритм поиска дал сбой. Как сильно это повлияет на ваше мнение о кандидате? Согласно одному из экспериментов в области психологии выбора, Роберт Эпштейн, психолог Американского Института Исследования и Технологий Поведения, выявил, что если человек в данной ситуации увидит позитивные новости о кандидате, то он проголосует за него с вероятностью более 48-ми процентов. И наоборот. Эпштейн назвал это явление Voting Manipulation Power – сила для манипулирования голосованием. Конечно, все это было в рамках лаборатории. Поэтому в 2014 году исследователи отправились на выборы в Индию, где в голосовании были задействованы восемьсот миллионов человек. Из них реально оказали участие порядка 430 миллионов. Исследователи провели очередной эксперимент на тех голосующих, которые не решились с выбором. В зависимости от того, какую информацию исследователи показывали людям, сила VMP оказывала на них влияние. Влиянию поддались от 24-х до 72-х процентов людей, участвующих в эксперименте. Впоследствии они назвали это эффектом Fox News – определяющим, как жители города, с консервативным кабельным каналом, становились более консервативными в своем выборе. В 2010 году Facebook мотивировал проголосовать более 340 тысяч человек, поставив на странице простую кнопку «I voted» (я проголосовал). Целевая аудитория составила 61 миллион пользователей. Из них 611 тысяч (один процент) получило сообщение, стимулирующее к голосованию, в топ-списке новостей. Другие шестьдесят миллионов человек получили специальное «социальное» сообщение, практически аналогичное, за исключением того, что оно включало в себя профили проголосовавших друзей. Люди, увидевшие «социальное» сообщение, с вероятностью в два процента чаще кликали на кнопку «I voted», в отличие от первой группы, где реакция составила 0,4 процента. Такое «социальное» сообщение обернулось в шестьдесят тысяч голосов [96] . . В среднем у пользователей Facebook в 2010 году было около 150-ти друзей, из них близкими были только десять (для территории США), и эксперты сошлись на мнении, что такие компании как цифровой «стук в дверь» могут увеличить количество избирателей на восемь процентов. Но что, если бы Facebook не ставил кнопку «I voted», а вместо этого бы просто попросил проголосовать за конкретного кандидата? Такой эксперимент предложил профессор Гарварда Джоннатан Зитрейн [97] . , назвав это феноменом цифровой избирательной географией [98] . . Например, в январе 2012 года Google заменил главную картинку в поисковике на специальный логотип, при нажатии на который можно было попасть на страницу с подачей петиции против онлайн-пиратства. В результате этой петиции появился специальный законопроект (SOPA), который расширил полномочия американских правоохранительных органов и правообладателей и ввел жесткие наказания. Проект в итоге застрял в Конгрессе и так и не был принят, но факт остается фактом, траффик перенаправлялся и накачивал петицию.

Возвращаясь к вопросам регулирования, хочу в первую очередь отметить, что все существующее регулирование не рассматривает, к сожалению, пользователей с точки зрения их жизненного цикла, не учитывает продукты с использованием алгоритмов.

Большинство стран фокусируется на создании базовой инфраструктуры для управления рисками, нежели точного управления регулированием конкретных кейсов, в том числе и те, которые привел я, несмотря на то, что каждому из них уже более пяти лет.

Глава 5

Метаданные

И построил он замок.

Сижу смотрю фильм « Анон» [99] . , где общество лишено личной жизни и прав. Специальные службы записывают на сервера с терабайтами данных все, что происходит вокруг, используя наше зрение. Внезапно происходит череда загадочных убийств…Главный герой встречается со своим напарником, чтобы исследовать их, и вместе они начинают анализировать метаданные жертв.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Алексей Благирев читать все книги автора по порядку

Алексей Благирев - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Big data простым языком [litres] отзывы


Отзывы читателей о книге Big data простым языком [litres], автор: Алексей Благирев. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x