LibKing » Книги » Научные и научно-популярные книги » Прочая научная литература » Ричард Грегори - Глаз и мозг. Психология зрительного восприятия

Ричард Грегори - Глаз и мозг. Психология зрительного восприятия

Тут можно читать онлайн Ричард Грегори - Глаз и мозг. Психология зрительного восприятия - бесплатно полную версию книги (целиком). Жанр: Прочая научная литература, издательство "Прогресс", год 1970. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте LibKing.Ru (ЛибКинг) или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Ричард Грегори - Глаз и мозг. Психология зрительного восприятия
  • Название:
    Глаз и мозг. Психология зрительного восприятия
  • Автор:
  • Жанр:
  • Издательство:
    "Прогресс"
  • Год:
    1970
  • ISBN:
    нет данных
  • Рейтинг:
    5/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Ваша оценка:

Ричард Грегори - Глаз и мозг. Психология зрительного восприятия краткое содержание

Глаз и мозг. Психология зрительного восприятия - описание и краткое содержание, автор Ричард Грегори, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Ричард Грегори, известный исследователь зрительной системы, в своей книге делает попытку дать анализ мозговых механизмов зрительного восприятия человека, последовательно останавливаясь на той роли, которую играют в организации зрительного восприятия периферический аппарат глаза и центральные аппараты мозгового анализа и синтеза зрительной информации. Предисловие и общая редакция А.Р.Лурия и В.П.Зинченко.

Глаз и мозг. Психология зрительного восприятия - читать онлайн бесплатно полную версию (весь текст целиком)

Глаз и мозг. Психология зрительного восприятия - читать книгу онлайн бесплатно, автор Ричард Грегори
Тёмная тема

Шрифт:

Сбросить

Интервал:

Закладка:

Сделать

Теперь мы знаем то, чего не знал Ньютон, а именно, что каждый спектральный цвет, или оттенок, является светом определенной частоты. Мы знаем также, что так называемое электромагнитное излучение, по существу, ничем не отличается от светового. Физическое различие между радиоволнами, инфракрасным светом, видимым светом, ультрафиолетовыми и рентгеновскими лучами состоит в их частоте. Только очень узкий диапазон этих частот возбуждает глаз и дает изображение и ощущение цвета. Диаграмма (рис. 2, 5) показывает, как узка эта полоса в физической картине волн. Взгляните на этот рисунок, ведь мы почти слепы!

Рис 2 5 Свет это лишь узкая полоса в общем электромагнитном спектре - фото 8

Рис. 2, 5. Свет — это лишь узкая полоса в общем электромагнитном спектре, который включает в себя радиоволны, инфракрасные, ультрафиолетовые и рентгеновские лучи. Физическая разница между ними состоит лишь в длине волны излучения, но их действие совершенно различно. Внутри той октавы цветов, к которой чувствителен глаз, различным цветам соответствует разная длина волн. Излучения вне светового диапазона при взаимодействии с материей обнаруживают совершенно иные свойства.

Если нам известна скорость света и его частота, то легко подсчитать длину волны, однако в действительности, частоту света трудно измерить непосредственно. Легче измерить длину световых волн, чем их частоту, хотя это не относится к низкочастотным радиоволнам. Длина световой волны измеряется путем расщепления света не с помощью призмы, а с помощью специальной решетки из тонких тщательно начерченных по определенным правилам линий, в результате чего также возникают цвета спектра. (Это можно видеть, если держать диск светового поляризатора наклонно, под тупым углом к источнику света: тогда отражение будет состоять из ярких цветов.) Если даны расстояния между линиями, нанесенными по определенному образцу и составляющими решетку, и угол, благодаря которому возникает пучок света данного цвета, то длина волны может быть определена очень точно. Подобным путем можно установить, что голубой свет имеет длину волны приблизительно 1/100 000 см, в то время как длина волны красного света равна 1/175 000 см. Длина световой волны важна для установления границ разрешающей способности оптических инструментов.

Мы не можем невооруженным глазом видеть один квант света, тем не менее рецепторы сетчатки настолько чувствительны, что они могут стимулироваться одним квантом света. Однако, чтобы получить ощущение вспышки света, необходимо несколько (от пяти до восьми) квантов света. Отдельные рецепторы сетчатки настолько чувствительны, насколько это вообще возможно для какого-либо детектора света, поскольку квант — это наименьшее количество лучистой энергии, которое вообще может существовать. К сожалению, прозрачные проводящие среды глаза далеки от совершенства и скрадывают возможности сетчатки воспринимать свет. Только около 10 % света, поступающего в глаз, достигают рецепторов, остальное теряется вследствие поглощения и расщепления внутри глаза прежде, чем свет достигнет сетчатки. Несмотря на эти потери, оказывается возможным при идеальных условиях видеть одну свечу на расстоянии 27 353 м.

Идея квантовой природы света имеет важное значение для понимания зрительного восприятия; эта идея вдохновила на ряд изящных экспериментов, направленных на выяснение физических свойств света и его восприятия глазом и мозгом. Первый эксперимент, посвященный изучению квантовой природы света, был проведен тремя физиологами — Гехтом, Шлером и Пиренном в 1942 г. Их работа является сейчас классической. Предполагая, что глаз должен обладать почти или целиком такой же чувствительностью, как это теоретически возможно, они задумали очень остроумный эксперимент, чтобы выяснить, сколько квантов света должно быть воспринято рецепторами, чтобы мы увидели вспышку света. Доказательство основывалось на использовании распределения Пуассона . Оно описывает ожидаемое распределение попаданий в цель. Идея состоит в том, что по крайней мере частично изменения чувствительности глаза во времени связаны не с состоянием самого глаза или нервной системы, а с колебаниями энергии слабого светового источника. Вообразите беспорядочный поток пуль, они не будут попадать в цель с постоянной скоростью, скорость будет варьировать, сходным образом наблюдаются колебания и в количестве квантов света, которые достигают глаза. Данная вспышка может содержать малое или большое число квантов света, и вероятность обнаружить ее будет тем выше, чем; больше она превышает среднее число квантов во вспышке. Для яркого света этот эффект несуществен, однако, поскольку глаз чувствителен и к нескольким квантам, колебания энергии света важно учитывать при минимальных величинах этой энергии, необходимых для возникновения ощущения.

Представление о квантовой природе света важно также и для понимания способности глаза выделять тонкие детали. Одна из причин, почему мы можем читать при свете луны только крупный газетный шрифт, состоит в том, что количество квантов, попадающих на сетчатку, недостаточно, чтобы создать полный образ за тот короткий промежуток времени, который требуется глазу, чтобы интегрировать энергию, — это число порядка одной десятой секунды. В действительности это еще не все, что может быть сказано по этому поводу; чисто физический фактор, обусловленный квантовой природой света, способствует появлению хорошо известного зрительного феномена — ухудшению остроты зрения при тусклом свете. До последнего времени это явление трактовалось исключительно как свойство глаза. (В самом деле часто довольно трудно установить, следует ли относить тот или иной зрительный феномен к области психологии, физиологии или физики.

Как возникают изображения? Проще всего изображение может быть получено с помощью булавочного отверстия. Рис. 2, 6 показывает, как это делается.

Рис 2 6 Образование изображения с помощью булавочного отверстия Лучи - фото 9

Рис. 2, 6. Образование изображения с помощью булавочного отверстия. Лучи, исходящие из определенного участка источника света, достигают только одного участка экрана, так как они проходят через отверстие. Таким образом, на экране возникает изображение (перевернутое), созданное лучами, проходящими через отверстие. Изображение не искажено, но неясно и не очень отчетливо. Очень маленькое отверстие вызывает неясность изображения вследствие эффекта дифракции, обусловленного волновой природой света.

Луч от части предмета х может достигнуть только одной части экрана у — той части, которая расположена на прямой линии, проходящей через булавочное отверстие. Каждая часть предмета освещает соответствующую часть экрана, так что на экране создается перевернутое изображение предмета. Полученное с помощью булавочного отверстия изображение будет довольно тусклым, потому что для четкого изображения нужно еще меньшее отверстие (хотя, если отверстие слишком мало, изображение будет расплывчатым, поскольку нарушается волновая структура света).

Читать дальше
Тёмная тема

Шрифт:

Сбросить

Интервал:

Закладка:

Сделать


Ричард Грегори читать все книги автора по порядку

Ричард Грегори - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Глаз и мозг. Психология зрительного восприятия отзывы


Отзывы читателей о книге Глаз и мозг. Психология зрительного восприятия, автор: Ричард Грегори. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
Большинство книг на сайте опубликовано легально на правах партнёрской программы ЛитРес. Если Ваша книга была опубликована с нарушениями авторских прав, пожалуйста, направьте Вашу жалобу на PGEgaHJlZj0ibWFpbHRvOmFidXNlQGxpYmtpbmcucnUiIHJlbD0ibm9mb2xsb3ciPmFidXNlQGxpYmtpbmcucnU8L2E+ или заполните форму обратной связи.
img img img img img