Рэймонд Смаллиан - Как же называется эта книга?
- Название:Как же называется эта книга?
- Автор:
- Жанр:
- Издательство:Мир
- Год:1981
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Рэймонд Смаллиан - Как же называется эта книга? краткое содержание
Можно сказать — вероятно, самый увлекательный сборник задач по логике. Около трехсот задач различной сложности сгруппированы по разделам, герои которых Рыцари и Лжецы, Алиса в Стране Чудес, Беллини и Челлини и даже сам граф Дракула! Если человек произносит «Я лгу» — говорит ли он неправду? Почему физики и математики по-разному решают задачи? Как вовремя распознать упыря? Ответы на эти и более серьезные вопросы Вы найдете в этом сборнике, а может быть, и ответ на вопрос «Как же называется эта книга?». Для всех, кто хочет научиться рассуждать.
Как же называется эта книга? - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Единственный случай, когда высказывание (1) ложно, может представиться, если Джон виновен, а его жена не виновна. Это условие заведомо не выполняется, если Джон и его жена не виновны. Иначе говоря, если Джон и его жена не виновны, то заведомо не верно, что Джон виновен, а его жена не виновна, поэтому высказывание (1) не может быть истинным.
Следующий пример еще более причудлив:
Если Конфуций родился в Техасе, то я Дракула. (2)
Высказывание (2) означает всего-навсего: «Не верно, что Конфуций родился в Техасе, и я не Дракула». Таким образом, высказывание (2) следует считать истинным.
К оценке истинности высказывания (2) можно подойти и с другой стороны. Высказывание (2) ложно лишь в том случае, если Конфуций родился в Техасе, а я не Дракула. Но поскольку Конфуций родился не в Техасе, то не может быть верно, что Конфуций родился в Техасе и что я не Дракула. Иначе говоря, высказывание (2) не может быть ложным. Следовательно, оно должно быть истинным.
Рассмотрим теперь любые два высказывания P, Q. Составим из них сложное высказывание.
Если P, то Q. (3)
Будем обозначать его P ⇒ Q (эту сокращенную запись принято читать либо как «если P, то Q», либо как «из P следует Q», либо «P влечет за собой Q», либо даже «P имплицирует Q»). Слово «следует» (и его синонимы) не слишком удачно, но оно привилось в литературе. Понимать его, как мы видели, надлежит лишь в совершенно определенном, хотя, быть может, и несколько необычном смысле: не верно, что P истинно и Q ложно. (В книге было «не верно, что P ложно и Q истинно», а это неправильно. — SStas)
Итак, относительно высказывания P ⇒ Q мы располагаем следующей информацией.
Факт 1. Если P ложно, то P ⇒ Q автоматически истинно.
Факт 2. Если Q истинно, то P ⇒ Q автоматически истинно.
Факт 3. Высказывание P ⇒ Q может быть ложно в том и только в том случае, если P истинно, а Q ложно.
Факт 1 иногда формулируют иначе: «Из ложного высказывания следует что угодно». Такое утверждение вызывает у некоторых философов самые решительные возражения (см., в частности, задачу 244 из гл. 14). Факт 2 иногда формулируют так: «Истинное высказывание следует из чего угодно».
Если заданы два высказывания P, Q, то их значения истинности могут распределяться четырьмя возможными способами: 1) P и Q истинны; 2) P истинно, Q ложно; 3) P ложно, Q истинно; 4) P и Q ложны.
В каждом конкретном случае мы должны иметь дело с одним и только с одним из этих четырех вариантов. Рассмотрим теперь высказывание P ⇒ Q. Можно ли определить, в каких случаях оно истинно и в каких — ложно? Можно, если воспользоваться следующими соображениями.
Случай 1: P и Q истинны. Так как Q истинно, то P ⇒ Q истинно (факт 2).
Случай 2: P истинно, Q ложно. Тогда P ⇒ Q ложно (факт 3).
Случай 3: P ложно, Q истинно. Тогда P ⇒ Q истинно (факт 1 или факт 2).
Случай 4: P ложно, Q ложно. Тогда P ⇒ Q истинно (факт 1).
Все четыре случая мы сведем в одну таблицу, называемую таблицей истинности для импликации:
(В «нормальной» таблице истинности вместо букв И и Л используют сокращения 0 — ложно и 1 — истинно — SStas)
Три буквы И, И, И (истинно, истинно, истинно) в первой строке означают, что когда P истинно и Q истинно, высказывание P ⇒ Q истинно. Буквы И, Л, Л во второй строке означают, что если P истинно, Q ложно, то P ⇒ Q истинно, а буквы Л, Л, И в четвертой строке — что если P ложно и Q ложно, то P ⇒ Q истинно.
Заметим, что P ⇒ Q истинно в трех из четырех случаев и ложно только во втором случае.
Еще одно свойство импликации. Импликация обладает еще одним важным свойством. Чтобы доказать истинность высказывания «Если P, то Q», достаточно, приняв высказывание P за посылку, убедиться в том, что из него следует высказывание Q. Иначе говоря, если из посылки P следует заключение Q, то высказывание «Если, то Q» истинно.
В дальнейшем мы будем ссылаться на это свойство импликации, как на факт 4.
P | Q | P⇒Q | |
1 | И | И | И |
2 | И | Л | Л |
3 | Л | И | И |
4 | Л | Л | И |
А. Применение импликации к рыцарям и лжецам
109. О каждом из двух людей A и B известно, что он либо рыцарь, либо лжец. Предположим, что A высказывает следующее утверждение: «Если я рыцарь, то B — рыцарь».
Можно ли определить, кто такие A и B: кто из них рыцарь и кто лжец?
110. У A спрашивают: «Вы рыцарь?» Тот отвечает: «Если я рыцарь, то съем собственную шляпу».
Докажите, что A придется съесть свою шляпу.
111. A утверждает: «Если я рыцарь, то дважды два — четыре». Кто такой A: рыцарь или лжец?
112. A заявляет: «Если я рыцарь, то дважды два — пять». Кто, по-вашему, A: рыцарь или лжец?
113. Относительно A и B известно, что каждый из них либо рыцарь, либо лжец. А заявляет: «Если B — рыцарь, то я лжец». Кто A и кто B?
114. Двух человек X и Y судят за участие в ограблении, A и B выступают на суде в качестве свидетелей. Относительно A и B известно, что каждый из них либо рыцарь, либо лжец. В ходе судебного заседания свидетели выступили со следующими заявлениями:
A: Если X виновен, то Y виновен.
B: Либо X не виновен, либо Y виновен.
Можно ли утверждать, что A и B однотипны? (Напомним, что двух обитателей острова рыцарей и лжецов мы называем однотипными, если они оба рыцари либо оба лжецы.)
115
У трех обитателей A, B и C острова рыцарей и лжецов взяли интервью, в ходе которого они высказали следующие утверждения:
A: B — рыцарь.
B: Если A — рыцарь, то C — рыцарь.
Можно ли определить, кто из A, B и C рыцарь и кто лжец?
Б. Любовь и логика
116
Предположим, что следующие два высказывания истинны:
1) Я люблю Бетти или я люблю Джейн.
2) Если я люблю Бетти, то я люблю Джейн.
Следует ли из них непременно, что я люблю Бетти? Следует ли из них непременно, что я люблю Джейн?
117
Предположим, что у меня спрашивают: «Верно ли, что если вы любите Бетти, то вы также любите Джейн?» Я отвечаю: «Если это верно, то я люблю Бетти».
Следует ли отсюда, что я люблю Бетти? Следует ли отсюда, что я люблю Джейн?
118
На этот раз перед нами две девушки: Ева и Маргарет. У меня спрашивают: «Правда ли, что если вы любите Еву, то вы также любите Маргарет?» Я отвечаю: «Если это правда, то я люблю Еву, и если я люблю Еву, то это правда».
О какой девушке можно с уверенностью сказать, что я ее люблю?
119
На этот раз перед нами предстанут три девушки: Сью, Марция и Диана. Предположим, что известно следующее.
1) Я люблю по крайней мере одну из этих трех девушек.
2) Если я люблю Сью, а не Диану, то я также люблю Марцию.
3) Я либо люблю и Диану и Марцию, либо не люблю ни одну из них.
4) Если я люблю Диану, то я также люблю Сью.
Кого из девушек я люблю?
Читать дальшеИнтервал:
Закладка: