Сергей Парновский - Как работает Вселенная: Введение в современную космологию
- Название:Как работает Вселенная: Введение в современную космологию
- Автор:
- Жанр:
- Издательство:Альпина нон-фикшн
- Год:2018
- Город:Москва
- ISBN:978-5-9614-5060-6
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Сергей Парновский - Как работает Вселенная: Введение в современную космологию краткое содержание
Книга ориентирована на широкий круг читателей, но некоторые ее разделы, в которых излагаются элементы нерелятивисткой космологии, требуют знания математики на уровне начальных курсов университета. Эту часть можно рассматривать как своеобразный учебник, в котором основные космологические решения получены без использования математического аппарата общей теории относительности.
Как работает Вселенная: Введение в современную космологию - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
4 °Cа является последним стабильным изотопом в этом списке. Позже 36Ar, 44Ti, 48Cr, 52Fe и 56Ni распадаются, образуя остальные элементы вплоть до 56Fe. Еще более тяжелые элементы образуются в результате захвата нейтронов, который идет либо медленно (s-процесс), либо быстро (r-процесс). S-процесс производит элементы вплоть до свинца, а r-процесс происходит при вспышках сверхновых и производит остальную часть таблицы Менделеева. Все эти процессы происходят на разных этапах эволюции Вселенной.
Как в ранней Вселенной, так и внутри звезд могут образовываться элементы не тяжелее железа. В то же время на Земле существуют залежи более тяжелых элементов, например урана. Откуда же они взялись? Считается, что более тяжелые элементы синтезируются во время взрывов новых и сверхновых звезд. Из частей сброшенной во время взрыва оболочки могут образоваться новые звездные системы. Так и произошло с нашим Солнцем, которое образовалось из остатков взрыва предыдущей звезды. Астрономы называют такие звезды звездами второго поколения.
Расчеты показывают, что наблюдаемое обилие тяжелых элементов требует по меньшей мере двух последовательных вспышек сверхновых и Солнце – это молодая звезда третьего поколения. Таким образом, Солнце вместе с Землей, да и мы с вами появились из хлама, оставшегося после взрыва сверхновой, которая сама уже была «секонд-хендом». Мы упоминали, что изучение науки может быть вредным для вашего эго?
Почему же в нашем Солнце так много водорода и гелия (более 80 %), если оно – звезда второго или третьего поколения? Разве весь водород и гелий не «выгорели» в предыдущей звезде, превратившись в углерод и более тяжелые элементы? Весь водород не переходит в другие элементы потому, что его концентрация во внешних слоях звезды больше, чем в центре, да и в центре она не падает до нуля. Просто ядро «отравляется» продуктами синтеза, т. е. концентрация водорода в нем становится меньше, чем нужно для поддержания баланса гравитационного и светового давлений, что и является причиной взрывов сверхновых. Таков механизм всех вспышек сверхновых, кроме самых мощных вспышек типа Ia, о которых мы поговорим в подразделе 5.1.1.
Но в центре остается еще очень много водорода. Ядра до железа 56Fe синтезируются путем слияния более легких ядер в недрах массивных звезд, синтез тяжелых и сверхтяжелых ядер идет путем нейтронного захвата в предсверхновых звездах и при взрывах сверхновых. Сверхтяжелые элементы не образуются в обычных звездах, поскольку этот процесс энергетически невыгоден, но при взрыве сверхновой образуется избыток энергии, которая частично расходуется на эти процессы. Поскольку взрывы сверхновых длятся недолго, тяжелых элементов вырабатывается относительно мало.
Замечательным свойством теории Гамова оказалось то, что она была открытой, т. е. допускала уточнения на основе новых более поздних теорий. Так, например, теория ядерных сил была разработана в конце XX в. Соответствующая теория, называемая квантовой хромодинамикой, основана на том, что барионы состоят из трех фундаментальных частиц, называемых кварками, а мезоны [66] Мезоны — нестабильные субатомные частицы, получаемые в очень высокоэнергетических реакциях. Они играют важную роль в объяснении ядерных сил. Наиболее известный мезон — пион (пи-мезон). Еще две частицы традиционно называются мезонами исключительно из-за своей массы: мюон (мю-мезон) и тау (тау-мезон). Они не имеют ничего общего с ядерными силами и, по сути, являются лептонами с избыточным весом.
– из двух. Барионы – это протоны, нейтроны и все более тяжелые частицы, испытывающие ядерные силы, называемые в науке сильным взаимодействием. Переносчиками ядерных сил являются частицы, называемые глюонами. Благодаря этому открытию в стандартную космологическую модель добавилось представление о том, что на ранней стадии существования Вселенной, до появления протонов и нейтронов, она была заполнена кварк-глюонной плазмой.
3.8.3. Проблема антиматерии
Среди физиков существует общее убеждение, что все в мире должно быть симметричным, если не доказано иное. Таким образом, предполагается, что во Вселенной должно быть равное число частиц и античастиц. Действительно, когда рождаются элементарные частицы, они рождаются парами: рождение каждой частицы сопровождается рождением ее античастицы.
Почему Вселенная заполнена материей, а не материей пополам с антиматерией? В противном случае некоторые галактики состояли бы из материи, а некоторые – из антиматерии. По их излучению невозможно было бы различить, из чего они состоят, поскольку квант света, фотон, обладает уникальным свойством: его античастица совпадает с ним самим. Но между областями из материи и антиматерии должны существовать границы, на которых происходили бы процессы, которые наблюдали бы астрономы.
Если где-то в космосе встречаются частица и ее античастица, происходит аннигиляция [67] Аннигиляция — реакция между частицей и античастицей, превращающая их обоих в фотоны с чрезвычайно высокой энергией, равной суммарной энергии исходных частиц.
, при которой обе эти частицы исчезают, а вместо них появляется два или три фотона. Простейшим примером аннигиляции является аннигиляция пары электрон-позитрон. Если их скорости существенно меньше скорости света, то энергия как электрона, так и позитрона будет равна примерно 500 кэВ. Соответственно, если происходит двухфотонная аннигиляция, то энергия каждого из фотонов также будет равна 500 кэВ.
Обнаружив излучение с такой энергией, мы понимаем, что видим результат аннигиляции. Источник подобного излучения зафиксирован, например, в центре нашей Галактики. Но излучение не слишком сильное, из чего видно, что позитроны в нашей Галактике встречаются очень редко. Если бы галактики из вещества и галактики из антивещества – «антигалактики» – встречались во Вселенной, то в области между ними соприкасались бы и аннигилировали межгалактический газ и пыль от галактики с «антигазом» и «антипылью» от «антигалактики». Но поскольку таких мощных источников, связанных с аннигиляцией, найти не удалось, приходится признать, что в видимой части Вселенной антивещество практически отсутствует.
В чем же причина этой асимметрии между частицами и античастицами? Почему первых много, а вторых мало? Неужели Вселенная образовалась так, что в ней было больше вещества, чем антивещества? Можно предложить другой ответ. Эксперименты на ускорителях показали, что в природе нет полной симметрии между частицами и античастицами. В частности, нарушается четность [68] Четность — это симметрия по отношению к инверсии всех пространственных координат, что эквивалентно зеркальному отражению. Нарушение четности было открыто Янг Чжэньнином и Ли Чжэндао, которые были удостоены за это Нобелевской премии по физике в 1957 г. В 1980 г. Джеймс Кронин и Вал Фитч получили Нобелевскую премию за открытие нарушения CP-инвариантности — преобразования, при котором помимо пространственной инверсии меняется знак всех электрических зарядов. Этот более сложный вариант симметрии называется комбинированной четностью. В настоящее время считается, что должна выполняться СРТ-симметрия, при которой к названным преобразованиям добавляется изменение направления течения времени. Из СРТ-симметрии и нарушения СР-инвариантности следует, что не существует никакой симметрии относительно обращения времени. Некоторые исследователи выдвигают гипотезу о нарушении CPT-инвариантности и связанном с этим явлении, называемом спонтанным бариогенезисом.
при слабых взаимодействиях.
Интервал:
Закладка: