Виталий Бронштэн - Серебристые облака и их наблюдение
- Название:Серебристые облака и их наблюдение
- Автор:
- Жанр:
- Издательство:Наука. Главная редакция физико-математической литературы
- Год:1984
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Виталий Бронштэн - Серебристые облака и их наблюдение краткое содержание
Серебристые облака и их наблюдение - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Хорошо известно значение озоносферы для защиты всего живого на Земле — растений, животных и людей — от губительного действия солнечных ультрафиолетовых лучей. Любые процессы, связанные с деятельностью человека, которые способны привести хотя бы к частичному разрушению озонного слоя, могут иметь роковые последствия для жизни на Земле.
В отличие от температуры, давление р и плотность ρ воздуха убывают с высотой монотонно, в соответствии с так называемой барометрической' формулой:

Здесь р 0, ρ 0— давление и плотность на уровне моря, Н — высота, отсчитываемая от этого уровня, Н *— очень важная величина, называемая шкалой высот , или высотой однородной атмосферы . Она определяет интервал высот, на котором плотность и давление уменьшаются в е раз ( е = 2,718…— основание натуральных логарифмов). Как показывает теория, величина Н *определяется формулой
Н *= R∙ T/ μ∙ g, (2)
где Т — температура, μ — средняя относительная молекулярная масса газа, g — ускорение силы тяжести, R — универсальная газовая постоянная. Поскольку g меняется с высотой очень медленно, можно считать, что H *зависит только от двух переменных величин: температуры Т и средней молекулярной массы μ , а в пределах гомосферы (где μ постоянна) только от Т . На уровне моря H *= 8 км. Нетрудно сообразить, что если бы можно было создать однородную атмосферу той же плотности, что у поверхности Земли, и с тем же общим давлением, ее высота была бы равна H *. Для тех читателей, которые знают интегральное исчисление, дадим краткое доказательство этого.
Найдем суммарную массу столба реальной атмосферы единичного сечения, используя вторую формулу (1). Для этого проинтегрируем плотность воздуха по высоте от нуля до бесконечности:

Таким образом, масса нашего столба равна массе столба воображаемой однородной атмосферы высотой H *и плотностью, равной ρ 0. Поскольку давление газа p= ρ ∙ R∙ T, в изотермической атмосфере, очевидно, и давление будет равно давлению однородного столба высотой H *.
Если атмосфера неизотермична (а именно так и обстоит дело в случае земной атмосферы), величина H *переменна и для каждого уровня имеет свое значение. Так, на уровне тропопаузы 6,4 км, на уровне стратопаузы H *= 8,4 км, на уровне мезопаузы (где и образуются серебристые облака) H *= 5 км. В термосфере H *быстро растет, не только за счет роста температуры, но и за счет уменьшения μ . Уже на высоте 215 км H *= 50 км, а на высоте 600 км H *= 100 км.
В заключение остановимся на некоторых явлениях, происходящих в атмосфере. Образование обычных (тропосферных) облаков происходит, как правило, на высотах от 0,5 до 6 км (слоистые, дождевые, кучевые). На больших высотах плавают высоко-кучевые и высоко-слоистые облака. Однако выше 7,5 км облака почти целиком состоят из ледяных кристаллов: это перистые облака, высота которых может доходить до 15–17 км.
Еще выше, на уровне 25–30 км, наблюдаются так называемые перламутровые облака — явление гораздо более редкое, чем серебристые облака.
На высотах от 120 до 70 км происходит испарение и плавление входящих в атмосферу метеорных тел — наблюдаются метеоры , свечение которых в основном определяется излучением атомов и ионов метеорных паров. На уровнях 80—100 км наблюдается некоторое относительное изобилие метеорных атомов, и ионов: здесь они образуются, после чего смешиваются в ходе диффузии с атомами и молекулами воздуха.
При полете метеора за ним формируется ионно-электронный след, отражающий метровые радиоволны. Весь этот комплекс явлений принято называть метеорными явлениями .
Еще выше расположена область полярных сияний (рис. 3).

Рис. 3. Полярное сияние 18–19 июля 1965 г., видимое одновременно с серебристыми облаками
(фото Б. Фогля, Канада).
Обычно разные формы полярных сияний располагаются на высотах от 100 до 1000 км, хотя иногда нижние границы дуг полярных сияний спускаются до 80 км. Как показывает спектральный анализ, основной вклад в свечение полярных сияний вносит излучение атомарного кислорода (особенно в зеленой линии 5577 А°), атомарной) азота, их ионов, молекул азота и кислорода и их ионов, а также водорода, гелия, натрия. Возбуждение свечения всех этих частиц происходит за счет их соударений с быстрыми заряженными частицами, летящими от Солнца (солнечный ветер). Это — протоны, электроны и ионы различных элементов, а также нейтральные атомы. Но основную роль в возбуждении свечения полярных сияний играют протоны и электроны. Поскольку эти частицы — заряженные, их траектории отклоняются магнитным полем Земли в сторону геомагнитных полюсов, поэтому сияния наблюдаются преимущественно в полярных районах.
Кроме полярных сияний, наблюдается еще общее свечение ночного неба , вызванное как возбуждением за счет столкновений, так и флуоресценцией газов атмосферы в результате фотовозбуждення (это свечение наблюдается вскоре после захода Солнца).
Мы закончили обзор строения верхних слоев атмосферы. Остается добавить, что в настоящее время все они доступны прямому изучению приборами, доставляемыми на самолетах (до 15–20 км), аэростатах (до 40 км), геофизических ракетах (до 250 км), искусственных спутниках Земли (до границ атмосферы).
Кстати, а что считать границей атмосферы? Исследования последних лет показали, что ионосфера простирается до высот в тысячи и десятки тысяч километров. Поэтому понятие границы атмосферы весьма условно. Часто принимают высоту этой границы в 2000 км. То, что выше, называют протоносферой — оболочкой, состоящей из ядер атомов водорода — протонов. За пределами атмосферы находятся радиационные пояса Земли. Систему частиц захваченных магнитным полем нашей планеты движущихся вдоль его силовых линий, принято называть магнитосферой Земли.
Сведения о давлении, плотности и температуре атмосферы до высоты 700 км приведены в Приложении 1 в конце книги.
§ 3. Условия наблюдений, высоты и скорости серебристых облаков
Как мы уже говорили, серебристые облака наблюдаются только на фоне сумеречного сегмента. Происходит это потому, что они светятся в основном отраженным светом Солнца, хотя, как подробнее будет сказано ниже, часть посылаемых ими лучей, возможно, рождается в процессе флуоресценции — переизлучения энергии, получаемой от Солнца, на других длинах волн. Для осуществления отражения, рассеяния и флуоресценции необходимо, чтобы солнечные лучи освещали серебристые облака. Зная их высоту над земной поверхностью (в среднем 83 км), нетрудно рассчитать, что для этого погружение Солнца под горизонт не должно превышать 19,5 градуса. С другой стороны, если Солнце погрузилось под горизонт менее чем на 6 градусов, еще слишком светло (гражданские сумерки) и серебристые облака, если они не очень яркие, неразличимы. Таким образом, наиболее благоприятные условия для наблюдения серебристых облаков соответствуют времени так называемых навигационных и астрономических сумерек, и вероятность обнаружить их тем больше, чем длительнее эти сумерки. Такие условия создаются летом на средних широтах. Именно на средних широтах с конца мая до середины августа чаще всего и наблюдаются серебристые облака.
Читать дальшеИнтервал:
Закладка: