Валерия Черепенчук - Генетика за 1 час

Тут можно читать онлайн Валерия Черепенчук - Генетика за 1 час - бесплатно ознакомительный отрывок. Жанр: Прочая научная литература, издательство «Э», год 2017. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Валерия Черепенчук - Генетика за 1 час краткое содержание

Генетика за 1 час - описание и краткое содержание, автор Валерия Черепенчук, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Невероятно, но факт: человек способен управлять своими генами. Уже сейчас мы добились столь многого в области генетики:
– нам известно, чем определяются все признаки организма;
– клонирование стало реальностью;
– изменение генов стало обыденностью в определенных науках.
Как это стало возможным и что ждет нас в будущем? Эта книга кратко и понятно расскажет об истории генетики, об ученых и их открытиях.
Будьте в курсе научных открытий – всего за час!

Генетика за 1 час - читать онлайн бесплатно ознакомительный отрывок

Генетика за 1 час - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Валерия Черепенчук
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Теория о центрах происхождения культурных растений была логически связана с еще более ранним исследованием Вавилова – законом гомологических рядов в наследственной изменчивости. С докладом на эту тему Николай Иванович выступил в 1920 г. в Саратове на III Всероссийском съезде по селекции и семеноводству. Результат был ошеломляющим – значимость материалов, представленных в докладе, современники сравнили с открытием периодической системы элементов Менделеева. В чем же суть закона?

Вавилов занимался в первую очередь растениями, которым посвящена большая часть его работ. Но впоследствии было выяснено, что закон гомологических рядов действует и применительно к животным и микроорганизмам.

Вавилов, изучив огромное количество собранных им материалов и обобщив статистические данные, пришел к выводу, что у генетически близких видов и родов вариации наследственной изменчивости весьма схожи. «Виды и роды, генетически близкие между собой, характеризуются тождественными рядами наследственной изменчивости с такой правильностью, что, зная ряд форм для одного вида, можно предвидеть нахождение тождественных форм у других видов и родов». Изучив ряд форм у одного вида, можно достаточно точно спрогнозировать, какие формы может представить родственный ему вид. Это дает растениеводам возможность планировать, к примеру, какие качества можно получить, одомашнив плохо изученное пока растение, родственник которого уже давно прописался на наших огородах.

В принципе, подобные предположения – о сходстве в изменчивости родственных видов – высказывались биологами давно, в частности, такую точку зрения высказывал Дарвин. Но только Вавилов обосновал эти предположения экспериментально и статистически. Кроме того, выявленная закономерность позволяла прогнозировать появление мутаций, которые, как мы уже выяснили, возникают спонтанно: у схожих видов схожими будут и мутации. Конечно, в открытом Вавиловым законе гомологических рядов возможны исключения. Ведь, как мы знаем, уже в эпоху древнего мира виды растений, ранее локально произраставшие в небольших регионах, начали распространяться по свету, следовательно, нельзя сбрасывать со счетов воздействие климата, разный состав почвы и многое другое. Но уже много раз этот закон помогал селекционерам планировать возможные варианты создания новых сортов или направить их по верному пути в поисках еще неизвестных форм.

2.8. Эра ДНК. Хранилища генетической информации

Новый прорыв в изучении наследственности был совершен в 1930-е – 1950-е гг. Ученым удалось проникнуть еще глубже в клетку и хромосому и описать вещество, которое непосредственно отвечает за генетическую информацию. Казалось бы, что еще можно изучать? Роль хромосом в наследственности уже ни для кого не была секретом. Но здесь можно привести такой образный пример. Человек может научиться водить машину, особо не вникая в работу ее механизмов. Если автомобиль заглохнет – такой водитель разберется в причинах, только если они будут, как говорится, лежать на поверхности. В случае сложной поломки владелец машины не сможет решить проблему. Генетики первой трети XX в. отчасти напоминали таких автомобилистов. Они решили многие вопросы наследственности, но отдельные моменты передачи признаков, наследования заболеваний и механизма работы генов по-прежнему были неочевидны. Новая страница в истории генетики была открыта, когда на первый план вышла аббревиатура, известная сегодня каждому школьнику – ДНК. Дезоксирибонуклеиновая кислота. Известная, но понятная ли?

Самое удивительное, что ДНК как химическое вещество была получена еще в 1869 г., но тогда открытию не придали особого значения. Дело было так. Однажды швейцарский физиолог и химик Иоганн Фридрих Мишер (1844–1895 гг.), исследуя клетки гноя, оставшиеся на старых бинтах, обнаружил в составе их ядер странную небелковую субстанцию (в то время считалось, что основой животной клетки является белок). Ученый назвал ее нуклеином (от лат. nucleus – ядро). (На самом деле Иоганн Фридрих Мишер открыл два схожих вещества – ДНК и РНК – рибонуклеиновую кислоту, но в то время разница между ними не была досконально изучена). После того как выяснилось, что у вещества есть свойства кислоты, его стали именовать нуклеиновой кислотой. Но функции данной кислоты долгое время оставались невыясненными. Постепенно установили, что она содержит азот, кислород и в значительном количестве фосфор. Наиболее популярное объяснение гласило, что нуклеиновая кислота – это просто хранилище фосфора, который, видимо, зачем-то необходим клеткам. Увязать это вещество с вопросами наследственности ученые не могли на протяжении нескольких десятилетий, хотя довольно быстро было установлено, что состав нуклеина и уже знакомого вам хроматина в составе хромосом весьма схожи. Многие исследователи считали, что нуклеиновая кислота «слишком проста», чтобы содержать сложнейшую генетическую информацию, и уделяли внимание в основном белковым соединениям: именно белки считали ответственными за наследственность.

Исследования, которые окончательно доказали «руководящую» роль ДНК в вопросах генетики, провел в 1944 г. сотрудник Рокфеллеровского университета в Нью-Йорке Освальд Эвери (1877–1955 гг.). Он отталкивался от опытов англичанина Фредерика Гриффита (1879–1941 гг.), связанных с изучением пневмококков – бактерий, вызывающих пневмонию. Гриффит обратил внимание на интересный факт: безопасные, невирулентные формы пневмококков (их еще называли шероховатыми из-за того, как они выглядели под микроскопом) в ряде случаев могли трансформироваться в опасные вирулентные, или гладкие, штаммы. Выяснилось это так: лабораторным мышам ввели одновременно живые невирулентные пневмококки и убитые нагреванием вирулентные. Через некоторое время большая часть мышей погибла, а в их крови были обнаружены живые вирулентные пневмококки. Гриффит предполагал, что опасные вирулентные бактерии каким-то образом трансформировали безопасные, значит, должен быть некий фактор, который за это отвечает.

Эвери со своими коллегами решил выяснить, что же это за фактор. Они подвергли бактерии – как безопасные, так и вирулентные – разнообразным воздействиям. Напомним, в то время считалось, что основную генетическую информацию несут белки, следовательно, разрушение белка должно полностью обезопасить вирулентный пневмококк. Но дезактивация белка не дала результатов. Разрушение клеточных стенок тоже ни к чему не привело. Во время новых опытов по образцу проведенных Гриффитом мыши продолжали погибать. Так, практически методом исключения, Освальд Эвери выяснил, что только одно вещество может являться причиной трансформации безопасных бактерий в опасные – это ДНК, дезоксирибонуклеиновая кислота. Разнообразные способы воздействия на бактерию разрушали разные ее элементы, но ДНК оставалась невредимой. В ходе эксперимента невирулентные пневмококки захватывали ее, получали новые свойства и в итоге убивали мышей.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Валерия Черепенчук читать все книги автора по порядку

Валерия Черепенчук - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Генетика за 1 час отзывы


Отзывы читателей о книге Генетика за 1 час, автор: Валерия Черепенчук. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x