Лиза Рэндалл - Достучаться до небес: Научный взгляд на устройство Вселенной

Тут можно читать онлайн Лиза Рэндалл - Достучаться до небес: Научный взгляд на устройство Вселенной - бесплатно ознакомительный отрывок. Жанр: Прочая научная литература, издательство Альпина нон-фикшн, год 2014. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Лиза Рэндалл - Достучаться до небес: Научный взгляд на устройство Вселенной краткое содержание

Достучаться до небес: Научный взгляд на устройство Вселенной - описание и краткое содержание, автор Лиза Рэндалл, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Человечество стоит на пороге нового понимания мира и своего места во Вселенной - считает авторитетный американский ученый, профессор физики Гарвардского университета Лиза Рэндалл, и приглашает нас в увлекательное путешествие по просторам истории научных открытий. Особое место в книге отведено новейшим и самым значимым разработкам в физике элементарных частиц; обстоятельствам создания и принципам действия Большого адронного коллайдера, к которому приковано внимание всего мира; дискуссии между конкурирующими точками зрения на место человека в универсуме. Содержательный и вместе с тем доходчивый рассказ знакомит читателя со свежими научными идеями и достижениями, шаг за шагом приближающими человека к пониманию устройства мироздания.

Достучаться до небес: Научный взгляд на устройство Вселенной - читать онлайн бесплатно ознакомительный отрывок

Достучаться до небес: Научный взгляд на устройство Вселенной - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Лиза Рэндалл
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Квантовая механика говорит нам, что по характеристикам волны можно судить о вероятности обнаружения частицы в конкретной точке пространства. Волны, о которых идет речь, могут быть обычными световыми волнами, а могут оказаться теми, которые несет в себе каждая отдельная частица. Длина такой волны говорит нам о том, на какое минимальное разрешение мы можем рассчитывать, если будем зондировать малые расстояния с помощью частицы или излучения.

Квантовая механика также утверждает, что короткие волны требуют высоких энергий. Дело в том, что с энергией связана частота, и волны самой высокой частоты — с самой короткой, соответственно, длиной — несут в себе максимальную энергию. Таким образом, квантовая механика связывает высокие энергии и малые расстояния и подсказывает нам, что только эксперименты, оперирующие высокими энергиями, могут помочь ученым проникнуть в тайны внутреннего устройства вещества. Именно по этой принципиальной причине для зондирования самой сердцевины вещества и его фундаментального строения нам необходимы устройства, способные разгонять частицы до высоких энергий.

О том, что высокие энергии позволяют исследовать крохотные расстояния и взаимодействия на этих расстояниях, говорят и квантово–механические волновые соотношения. Чем меньшие расстояния мы хотим рассмотреть, тем более высокие энергии — и, следовательно, более короткие волны — нам потребуются. Квантово–механический принцип неопределенности, утверждающий, что малые расстояния связаны с большими импульсами, получает дополнение в лице специальной теории относительности, которая устанавливает связь между энергией, массой и импульсом и делает эту связь более отчетливой.

Ко всему прочему, Эйнштейн научил нас, что энергия и масса взаимозаменяемы и могут превращаться друг в друга. Так, при столкновении частиц их масса может обернуться энергией, поэтому чем выше энергия, тем более тяжелые материальные частицы могут быть получены, так как Е = mc 2 . Это уравнение означает, что высокая энергия — Е — делает возможным создание более тяжелых частиц с большей массой — m. И эта энергия носит всеобщий характер, из нее может возникнуть частица любого типа, если только она кинематически возможна (иначе говоря, достаточно легка).

Таким образом, высокие энергии, исследованием которых мы занимаемся в настоящее время, — это мостик к меньшим расстояниям и размерам, а возникающие в ходе эксперимента частицы — ключ к пониманию фундаментальных законов природы, действующих на этих расстояниях. Любые новые частицы и взаимодействия, проявляющиеся на малых расстояниях, могут стать ключом к пониманию основы так называемой Стандартной модели элементарных частиц — наших нынешних представлений о самых базовых, самых фундаментальных структурных элементах вещества и их взаимодействиях. Теперь давайте рассмотрим некоторые ключевые открытия, связанные со Стандартной моделью, и методы, которые используют сегодня ученые, чтобы еще немного продвинуться в этом направлении.

ОТКРЫТИЕ ЭЛЕКТРОНОВ И КВАРКОВ

Все объекты в атоме — электроны, обращающиеся вокруг ядра, и кварки, удерживаемые глюонами внутри протонов и нейтронов — были экспериментально обнаружены учеными при помощи Миниатюрных «зондов» с высокими энергиями. Мы уже видели, что электроны в атоме привязаны к ядру силой притяжения противоположных электрических зарядов. Благодаря этой силе энергия системы в целом — атома — оказывается ниже, чем суммарная энергия отдельных его элементов. Поэтому, для того чтобы выделить и исследовать электроны, кто‑то должен передать атому достаточно энергии, чтобы его ионизировать — иначе говоря, освободить электроны, оторвав их от ядра. Отдельный электрон для физиков гораздо удобнее: его свойства, такие как заряд и масса, можно исследовать.

Открытие ядра — другой составной части атома — было еще более удивительным событием. Эрнест Резерфорд и его студенты обнаружили ядро в ходе опытов, аналогичных сегодняшним экспериментам с элементарными частицами. Они обстреливали ядрами гелия (которые тогда называли альфа–частицами, потому что о существовании у атомов ядер еще ничего не было известно) тонкую золотую фольгу. Энергия альфа–частиц оказалась достаточной, чтобы Резерфорд смог выявить некие структуры внутри ядра. Он обнаружил, что альфа–частицы, которыми они обстреливали фольгу, иногда отклонялись на значительно больший угол, чем рассчитывали ученые (рис. 20). Они ожидали, что частицы будут равномерно рассеиваться, а вместо этого обнаружили, что некоторые из них отлетают от фольги, будто рикошетят от заключенных внутри тяжелых шариков. Сам Резерфорд описывал это так:

РИС 20 В эксперименте Резерфорда альфачастицы которые как нам сегодня - фото 20

РИС. 20. В эксперименте Резерфорда альфа–частицы (которые, как нам сегодня известно, представляют собой ядра гелия) рассеиваются на золотой фольге. Неожиданно большой угол отражения некоторых альфа–частиц продемонстрировал существование в центре атома концентрированной массы — атомного ядра

«Это было самое невероятное событие из всех, с какими я сталкивался в жизни. Это было почти столь же невероятно, как если бы вы стреляли 15–дюймовым снарядом по листу папиросной бумаги, а снаряд отскочил бы и попал рикошетом в вас самих. После, как следует поразмыслив, я пришел к выводу, что такое отражение должно быть результатом одного–единственного столкновения; я провел расчеты и убедился, что невозможно получить реакцию такой силы, если не взять систему, в которой большая часть массы атома сконцентрирована в крохотном ядре. Именно тогда у меня появилась мысль об атоме с маленьким массивным центром, несущим электрический заряд».

При экспериментальном обнаружении кварков внутри протонов и нейтронов также использовались методы, во многом аналогичные методам Резерфорда, но энергии для этого потребовались намного большие, чем были у его альфа–частиц. Требовался ускоритель частиц. Он должен был придавать электронам — и излучаемым ими фотонам — достаточно высокие энергии.

Первый кольцевой ускоритель элементарных частиц получил название циклотрон, поскольку частицы в нем, ускоряясь, двигались по окружности. Первый циклотрон построил в 1932 г. Эрнест Лоуренс в Университете Калифорнии. Это был очень маленький (около 30 см в диаметре) и слабый по современным стандартам циклотрон. Энергии, которые он позволял получать, даже близко не подходили к уровню, необходимому для обнаружения кварков. Это знаменательное открытие стало возможным лишь после многочисленных усовершенствований конструкции ускорителей; в ходе которых, кстати говоря, было сделано несколько важных открытий.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Лиза Рэндалл читать все книги автора по порядку

Лиза Рэндалл - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Достучаться до небес: Научный взгляд на устройство Вселенной отзывы


Отзывы читателей о книге Достучаться до небес: Научный взгляд на устройство Вселенной, автор: Лиза Рэндалл. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
Людмила
6 февраля 2024 в 23:33
Уважаемая Елизавета согласна с вами когда нравится думать тогда и происходят открытия
Мысль не останавливается а цепляется одна ниточка мысли за другую Анализируя мысли других людей сопоставляя свои мысли с множеством мыслей других людей и не важно учёных со степенью или просто человека думающего приходит сформированная уже на основании мыслей всех других рождается открытие ... С уважением к вам Лиза Чудесно что вы любите думать новых открытий вам, откровений Вселенной
x