Лиза Рэндалл - Достучаться до небес: Научный взгляд на устройство Вселенной

Тут можно читать онлайн Лиза Рэндалл - Достучаться до небес: Научный взгляд на устройство Вселенной - бесплатно ознакомительный отрывок. Жанр: Прочая научная литература, издательство Альпина нон-фикшн, год 2014. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Лиза Рэндалл - Достучаться до небес: Научный взгляд на устройство Вселенной краткое содержание

Достучаться до небес: Научный взгляд на устройство Вселенной - описание и краткое содержание, автор Лиза Рэндалл, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Человечество стоит на пороге нового понимания мира и своего места во Вселенной - считает авторитетный американский ученый, профессор физики Гарвардского университета Лиза Рэндалл, и приглашает нас в увлекательное путешествие по просторам истории научных открытий. Особое место в книге отведено новейшим и самым значимым разработкам в физике элементарных частиц; обстоятельствам создания и принципам действия Большого адронного коллайдера, к которому приковано внимание всего мира; дискуссии между конкурирующими точками зрения на место человека в универсуме. Содержательный и вместе с тем доходчивый рассказ знакомит читателя со свежими научными идеями и достижениями, шаг за шагом приближающими человека к пониманию устройства мироздания.

Достучаться до небес: Научный взгляд на устройство Вселенной - читать онлайн бесплатно ознакомительный отрывок

Достучаться до небес: Научный взгляд на устройство Вселенной - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Лиза Рэндалл
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Однако столкновение двух пучков имеет одно серьезное преимущество. При таких столкновениях можно получить гораздо более высокие энергии. Уже Эйнштейн мог бы объяснить, почему современные ученые однозначно предпочитают коллайдеры экспериментам с неподвижной мишенью. Это связано с понятием «инвариантная масса системы». Хотя сегодня даже ребенок знает, что Эйнштейн создал теорию относительности, сам ученый считал, что более подходящим названием для нее было бы теория инвариантов. Подлинной целью его исследований было найти способ, при помощи которого можно было бы уйти от влияния конкретной системы отсчета, то есть найти инвариантные величины, характеризующие систему.

Вероятно, вы больше знакомы с этой идеей на примере пространственных характеристик, таких как линейный размер. Линейный размер неподвижного объекта не зависит от того, как именно он ориентирован в пространстве. Объект имеет фиксированный размер, который никак не связан с вашими наблюдениями, в отличие от его координат, которые зависят от произвольного набора осей и направлений, которые вы выбираете.

Эйнштейн показал, как описать явление, чтобы его характеристики не зависели от ориентации или собственного движения наблюдателя. Инвариантная масса — это мера полной энергии системы. Она говорит о том, объект какой массы может быть в принципе создан из энергии, содержащейся в вашей системе.

Чтобы определить показатель инвариантной массы, можно задать следующий вопрос: если бы ваша система была неподвижна, то есть если бы у нее не было ни скорости, ни импульса, сколько бы энергии она в себе содержала? Если система не имеет импульса, к ней применима формула Эйнштейна Е = mc 2 . Следовательно, если известна энергия системы в покое, известна и ее инвариантная масса. Если система находится не в покое, следует использовать более сложный вариант той же формулы, где помимо энергии фигурирует и величина импульса.

Предположим, мы сталкиваем между собой два пучка элементарных частиц с одинаковой энергией и равными по величине импульсами, направленными в противоположные стороны. При столкновении импульсы пучков складываются и в сумме дают нуль. Это означает, что система в целом находится в покое. Таким образом, вся энергия ·— сумма энергии частиц в двух отдельных пучках — может быть превращена в массу.

Эксперимент с неподвижной мишенью проходит совсем иначе. Пучок элементарных частиц в нем обладает большим импульсом, а мишень импульса не имеет. Для образования новых частиц доступна не вся энергия частицы, потому что система в целом продолжает двигаться. Из‑за этого движения не вся энергия столкновения может быть пущена на создание новых частиц — ведь некоторая ее часть останется в виде связанной с ними кинетической энергии. Оказывается, доступная энергия системы растет пропорционально всего лишь квадратному корню суммарной энергии частиц в пучке и в мишени. Это означает, к примеру, что если бы мы увеличили энергию протонного пучка в 100 раз и столкнули бы такой протон с другим — неподвижным — протоном, то энергия, пригодная для создания новых частиц, увеличилась бы всего в 10 раз.

Значит между столкновением во встречных пучках и столкновением с неподвижной мишенью есть большая разница. Энергия столкновения пучков намного выше — и она отнюдь не вдвое превосходит энергию столкновения пучка с неподвижной мишенью, как вы, вероятно, могли бы подумать. Такая догадка была бы основана на классическом подходе, который не годится для релятивистских частиц в пучке, летящем со скоростью, близкой к скорости света. Разница суммарной энергии между столкновениями пучок — мишень и пучок — пучок намного больше, поскольку на таких скоростях действует теория относительности. Так что если нам нужны по–настоящему высокие энергии, то выбора у нас не остается: придется обращаться к ускорителю–коллайдеру. В нем два пучка элементарных частиц будут разогнаны до высоких энергий, а затем направлены навстречу друг другу.

БАК — типичный пример ускорителя–коллайдера. В нем сталкиваются два пучка элементарных частиц, которые при помощи магнитов направляют навстречу друг другу. Основными параметрами, определяющими возможности любого коллайдера, являются тип частиц, с которыми он работает, их энергия после разгона и светимость установки (суммарная интенсивность пучков и, следовательно, число происходящих в ускорителе событий).

ТИПЫ КОЛЛАЙДЕРОВ

Итак, столкновение двух пучков позволяет получить более высокие энергии (а значит, исследовать меньшие расстояния), чем эксперименты с неподвижной мишенью, поэтому мы выбираем коллайдер. Возникает следующий вопрос: что сталкивать? Этот вопрос порождает несколько интересных вариантов, из которых нам предстоит выбрать один. В частности, мы должны решить, какие элементарные частицы следует ускорять, чтобы они могли принять участие в столкновении.

Имеет смысл воспользоваться готовым материалом, легко доступным на Земле. В принципе, мы могли бы сталкивать между собой нестабильные частицы: к примеру, частицы, получившие название мюонов (они быстро распадаются на электроны), или тяжелые кварки, такие как t–кварки (они распадаются на другие, более легкие виды частиц).

В этом случае нам, прежде чем начать разгон пучков, необходимо было бы получить нужные частицы в лаборатории, поскольку под рукой их нет. Но, даже если бы мы смогли изготовить нужное количество частиц и разогнать их, прежде чем они распадутся, нам бы пришлось еще позаботиться о безопасности и подумать, как отвести излучение. Ни одно из этих препятствий не является непреодолимым — и особенно это относится к мюонам, возможность использовать которые в пучках в настоящее время исследуется. Ясно, однако, что по сравнению со стабильными частицами нестабильные ставят перед исследователями дополнительные проблемы.

Так что давайте остановимся на более понятном и простом варианте: возьмем стабильные частицы, которые имеются на Земле в любом необходимом количестве и сами по себе не распадаются. В эту категорию попадают легкие частицы или на крайний случай связанные стабильные конфигурации легких частиц, такие как протоны. Кроме того, мы предпочли бы заряженные частицы, которые можно без труда разгонять электрическим полем. Это оставляет нам на выбор протоны и электроны—частицы, которых вокруг полным–полно.

Что же выбрать? У той и другой частицы есть свои сильные и слабые стороны. Электроны хороши тем, что столкновения у них получаются чистые и понятные — в конце концов, это фундаментальные частицы. Когда электрон с чем‑то сталкивается, его энергия не распыляется на входящие в его состав субструктуры: насколько нам известно на настоящий момент, электрон дальше уже не делится. А раз сам по себе он не делится, мы можем очень точно проследить за тем, что происходит при его столкновении с иным объектом.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Лиза Рэндалл читать все книги автора по порядку

Лиза Рэндалл - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Достучаться до небес: Научный взгляд на устройство Вселенной отзывы


Отзывы читателей о книге Достучаться до небес: Научный взгляд на устройство Вселенной, автор: Лиза Рэндалл. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
Людмила
6 февраля 2024 в 23:33
Уважаемая Елизавета согласна с вами когда нравится думать тогда и происходят открытия
Мысль не останавливается а цепляется одна ниточка мысли за другую Анализируя мысли других людей сопоставляя свои мысли с множеством мыслей других людей и не важно учёных со степенью или просто человека думающего приходит сформированная уже на основании мыслей всех других рождается открытие ... С уважением к вам Лиза Чудесно что вы любите думать новых открытий вам, откровений Вселенной
x