Лиза Рэндалл - Достучаться до небес: Научный взгляд на устройство Вселенной
- Название:Достучаться до небес: Научный взгляд на устройство Вселенной
- Автор:
- Жанр:
- Издательство:Альпина нон-фикшн
- Год:2014
- Город:Москва
- ISBN:978-5-91671-264-3
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Лиза Рэндалл - Достучаться до небес: Научный взгляд на устройство Вселенной краткое содержание
Достучаться до небес: Научный взгляд на устройство Вселенной - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
РИС. 60. Два скварка, одновременно возникшие в БАКе, распадутся на кварк и LSP каждый и оставят после себя сигнатуру в виде дефицита энергии
Если суперсимметрия будет обнаружена, экспериментаторы на этом не остановятся. Они попытаются определить весь спектр суперсимметричных частиц, а теоретики будут работать над интерпретацией полученных результатов. Под идеей суперсимметрии и частиц, способных вызывать ее спонтанное нарушение, скрывается интереснейшая теория. Мы знаем, какие суперсимметричные частицы должны существовать, если суперсимметрия существенна для проблемы иерархии, но мы пока не знаем ни их точных масс, ни того, как эти массы возникают.
То, что увидит БАК, очень сильно зависит от спектра масс суперсимметричных частиц, который, вероятно, отличается от спектра масс обычных частиц. Мы знаем, что частицы могут распадаться только на более легкие. Цепочка распадов — последовательность возможных распадов суперсимметричных частиц — определяется их массами, тем, какие из них легче, а какие тяжелее. Скорости различных процессов также зависят от массы частиц. Более тяжелые частицы в среднем распадаются быстрее. Кроме того, их обычно сложнее получить, потому что они возникают только при высокоэнергетических столкновениях. Все это дало бы нам важную информацию о том, что лежит в основе Стандартной модели и что ожидает нас на следующих энергетических масштабах. Естественно, это относится к анализу любых новых данных, которые нам удастся получить.
Тем не менее следует помнить, что, несмотря на популярность теории суперсимметрии среди физиков, существует несколько поводов для беспокойства и оснований сомневаться в том, что эта теория действительно применима в реальном мире и решает проблему иерархии.
Во–первых, и это, возможно, самое главное, мы пока не видели никаких экспериментальных свидетельств в пользу этой теории. Если суперсимметрия существует, то единственным оправданием для полного отсутствия доказательств может быть тот факт, что все суперпартнеры тяжелые. Но естественное решение проблемы иерархии требует, чтобы суперпартнеры были относительно легкими. Чем тяжелее суперпартнеры, тем менее адекватным средством решения проблемы иерархии представляется суперсимметрия. Потребуется подгонка, определяемая отношением массы бозона Хиггса к масштабу масс, при которых нарушается суперсимметрия. Чем больше это отношение, тем сильнее придется «настраивать» теорию.
В суперсимметричной модели есть единственный способ сделать Хиггса достаточно тяжелым, чтобы его не обнаружили до сих пор, а именно — включить в его массу значительные квантовомеханические поправки, для которых опять же необходимы тяжелые суперпартнеры. Их массы должны быть настолько большими, что естественное решение проблемы иерархии вновь невозможно, несмотря на суперсимметрию.
Еще одна проблема с суперсимметрией — проблема поиска непротиворечивой модели, которая предусматривала бы нарушение суперсимметрии и была согласована со всеми полученными до сего дня экспериментальными данными. Суперсимметрия — очень специфическая симметрия, она устанавливает связи между многими взаимодействиями и запрещает некоторые из них, которые, вообще говоря, квантовая механика допускает. При нарушении суперсимметрии берет верх «принцип анархии» и все, что может случиться, случается. Большинство моделей предсказывают типы распадов, которые либо никогда не регистрировались в эксперименте, либо встречаются слишком редко по сравнению с прогнозом. В общем, стоит суперсимметрии нарушиться, и квантовая механика не упустит случая разворошить осиное гнездо.
Возможно, физики просто не замечают верных ответов. Мы, разумеется, не можем точно сказать, что хороших моделей не существует или что некоторой подгонки не потребуется. Конечно, если суперсимметрия — верное решение проблемы иерархии, то доказательства ее существования скоро будут получены на БАКе. Так что этот вариант, безусловно, стоит исследовать. Открытие суперсимметрии означало бы, что эта новая симметрия пространства–времени применима не только в теоретических изысканиях, но и в реальном мире.
Однако пока суперсимметрия не доказана, имеет смысл рассмотреть и альтернативные варианты. И первой в очереди стоит модель, известная как техницвет.
ТЕХНИЦВЕТ
Еще в 1970–е гг. физики рассматривали и альтернативную гипотезу решения проблемы иерархии, известную как теория техницвета.В моделях этого класса фигурируют частицы, которые интенсивно взаимодействуют между собой посредством новой силы, получившей шутливое название техницветной.Суть идеи состояла в том, что сила эта действует примерно так же, как сильное взаимодействие (известное в среде физиков еще и как цветовое взаимодействие), но связывает между собой частицы на масштабе энергий, характерном для слабого взаимодействия, а не на намного более низком уровне протонных масс.
Если ответом на проблему иерархии действительно является техницвет, то БАК не произведет на свет ни одного фундаментального бозона Хиггса. Вместо этого он выдаст некое связанное состояние — что‑то похожее на адрон, которое будет играть роль частицы Хиггса. Экспериментальным свидетельством в пользу техницвета будет множество сложных частиц (связанных состояний) и сильных взаимодействий — все очень похоже на привычные адроны, но только на гораздо более высоком уровне энергий на масштабе слабого взаимодействия или даже выше.
Однако если решение проблемы иерархии — действительно техницвет, то мы должны были бы уже обнаружить тому доказательства, хотя, конечно, могли и пропустить что‑то не слишком заметное.
Кроме того, строить модели на базе теории техницвета еще сложнее, чем на основе суперсимметрии. Оказалось, что найти модель, которая согласовывалась бы со всем, что мы наблюдаем в природе, — очень нетривиальная задача, и до сих пор подобрать полностью подходящую модель не удалось.
Тем не менее экспериментаторы будут работать непредвзято; поиск техницветной силы и любого другого нового типа сильного взаимодействия тоже входит в программу, но надежды на положительный результат не слишком велики. Однако если окажется все‑таки, что именно теория техницвета лежит в фундаменте нашего мироустройства, то, может быть, Microsoft Word перестанет наконец воспринимать это слово только как название запатентованного полиграфического процесса и исправлять первую его букву на заглавную.
Читать дальшеИнтервал:
Закладка: