Карл Циммер - Микрокосм. E. coli и новая наука о жизни
- Название:Микрокосм. E. coli и новая наука о жизни
- Автор:
- Жанр:
- Издательство:Альпина нон-фикшн
- Год:2013
- Город:Москва
- ISBN:978-5-91671-269-8, 978-0-30-27686-5;
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Карл Циммер - Микрокосм. E. coli и новая наука о жизни краткое содержание
E. coli —
Интересно, что
— общественный микроб. Автор проводит удивительные и тревожные параллели между жизнью
и нашей собственной жизнью. Он показывает, как этот микроорганизм меняется практически на глазах исследователей, раскрывая перед их изумленным взором миллиарды лет эволюции, закодированные в его геноме.
Издание подготовлено при поддержке Фонда Дмитрия Зимина «Династия»
Династия
Фонд некоммерческих программ «Династия» основан в 2001 г. Дмитрием Борисовичем Зиминым, почетным президентом компании «Вымпелком». Приоритетные направления деятельности Фонда — поддержка фундаментальной науки и образования в России, популяризация науки и просвещение. В рамках программы по популяризации науки Фондом запущено несколько проектов. В их числе — сайт elementy.ru, ставший одним из ведущих в русскоязычном Интернете тематических ресурсов, а также проект «Библиотека «Династии» — издание современных научно — популярных книг, тщательно отобранных экспертами — учеными. Книга, которую вы держите в руках, выпущена в рамках этого проекта.
Микрокосм. E. coli и новая наука о жизни - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Существует безумное количество разнообразных белков, но их объединяет одно общее фундаментальное свойство. Все белки, где бы они ни образовались — в организме человека или в бактериальной клетке, — построены из одних и тех же «деталей» — 20 небольших молекул, именуемых аминокислотами. И работают белки в бактериях примерно так же, как и в человеческом организме. Ученые с удивлением обнаружили, что одни и те же ферменты часто отвечают за одни и те же химические реакции у всех без исключения видов.
«От слона до маслянокислой бактерии — всюду одно и то же!» — заявил в 1926 г. голландский биохимик Альберт Клюйвер.
Может быть, биохимические основы и одинаковы у всех живых организмов, но и различия между ними огромны. Самое важное из них — наследственность. В начале XX в. генетики открыли законы, в соответствии с которыми животные, растения и грибы передают потомкам свои гены. Но бактерии, такие как E. coli, казалось, не хотели играть по общим правилам. Более того, на первый взгляд у них вообще не было генов.
Большую часть информации о наследственности генетики в то время получали из лабораторий, наполненных мушками и гнилыми бананами. Томас Хант Морган, биолог из Колумбийского университета, разводил плодовую мушку дрозофилу — Drosophila melanogaster, чтобы выяснить, как родительские признаки передаются потомкам. Морган назвал факторы, определяющие те или иные признаки, генами, хотя о том, что такое на самом деле гены, не имел никакого представления. Он знал, однако, что свои гены потомку передают и мать, и отец, и что иногда ген может не проявиться в первом поколении, но вновь «всплыть на поверхность» в следующем. Он мог скрестить красноглазую мушку с белоглазой и получить целое поколение исключительно красноглазых мушек. Но если он скрещивал этих гибридных мушек между собой, то у некоторых мушек второго поколения вновь появлялись белые глаза.
Морган и его студенты искали в клетках дрозофилы молекулы, которые могли бы иметь какое‑то отношение к этим таинственным генам. Их внимание привлекли странные структуры в ядре клетки — хромосомы. После специальной окраски хромосомы становятся похожи на мятые полосатые чулки. При этом ученые обнаружили, что полоски на хромосомах дрозофилы столь же характерны и уникальны, как и вездесущие ныне штрихкоды. Большая часть хромосом парная, при этом одна хромосома в паре унаследована от матери, другая — от отца. Сравнив их «полоски», Морган и его студенты показали, что от поколения к поколению они могут меняться. В процессе развития половых клеток дрозофилы парные хромосомы подходят друг к другу вплотную и обмениваются сегментами. От того, какие именно сегменты унаследует мушка — потомок, зависит и комбинация генов, которую она получит.
Закономерности наследования выглядели почти как какие‑то математические абстракции. Джордж Бидл, один из аспирантов Моргана, решил вернуть гены с высот абстракции на землю и попытался выяснить в точности, как именно гены определяют цвет волос и другие признаки. Вместе с биохимиком Эдвардом Тейтемом Бидл попытался проследить путь от генов дрозофилы до молекул, из которых состоит окрашивающий ее глаза пигмент. Однако этот эксперимент оказался слишком сложным. Бидл и Тейтем отказались от плодовых мушек в пользу более простого вида — хлебной плесени Neurospora crassa.
Конечно, у хлебной плесени нет таких очевидных признаков, как глаза и крылья; тем не менее она синтезирует многочисленные ферменты, часть из которых отвечает за производство аминокислот. Чтобы посмотреть, каким образом гены плесени управляют синтезом этих ферментов, Бидл и Тейтем подвергали плесень воздействию рентгеновского излучения. Ученые знали, что у личинок мух при подобном воздействии некоторые гены мутируют, и эти мутации приводят к появлению новых признаков — лишних крылышек или другой окраски глаз, которые мутанты могут передавать следующим поколениям.
Теперь Бидл и Тейтем занялись производством мутантов хлебной плесени. Некоторые из них теряли способность синтезировать определенные аминокислоты, потому что лишались ключевого фермента. Но если Бидл и Тейтем затем скрещивали мутантную плесень с обычной, то некоторые потомки такого союза вновь обретали эту способность. В 1941 г. ученые сделали вывод: за каждым ферментом хлебной плесени стоит один ген.
Вырисовывалась смутная, но непротиворечивая картина того, как работают гены — по крайней мере гены животных, растений и грибов. Но бактериям в этой картине, казалось, места не было. Становилось все очевиднее, что гены находятся в хромосомах, а у бактерий хромосомы, на первый взгляд, вообще отсутствовали. Если у них и есть гены, то в те времена ученые почти не надеялись их найти. Гены дрозофилы удавалось изучать благодаря тому, что мушки размножаются половым путем. В ходе этого процесса хромосомы обмениваются участками, и гены попадают к потомкам в разных сочетаниях. На бактериях, однако, ученые не могли проводить подобных экспериментов, потому что они не имеют пола. На первый взгляд бактерия просто растет, а затем делится пополам. Многие исследователи рассматривали бактерии просто как мягкие мешочки с ферментами — принципиально иной тип жизни.
Со временем выяснилось, однако, что вся жизнь на Земле, включая и бактериальную, основана на одних и тех же фундаментальных принципах. Раскрыть ученым многие тайны этого единства было суждено бактерии E. coli, которая стала для биологов одним из самых мощных инструментов исследования жизни.
Превращение обычной бактерии в инструмент науки началось с простого вопроса. Эдвард Тейтем заинтересовался, применимо ли к бактериям открытое им в экспериментах с плесенью правило «один ген — один фермент». Он решил провести такой же опыт, как с хлебной плесенью, но на этот раз облучить не плесень, а бактерии. Для эксперимента Тейтем выбрал штамм E. coli с обозначением К-12. Он был выделен в 1922 г. из организма больного дифтерией в штате Калифорния, и с тех пор культура этого штамма поддерживается в Стэнфордском университете для занятий по микробиологии.
Выбор Тейтема был обусловлен практическими соображениями. Подобно большинству других штаммов E. coli, К-12 безвреден. Кроме того, E. coli способна самостоятельно производить все необходимые ей аминокислоты и множество других молекул. Для питания ей почти ничего не нужно, кроме сахара, аммиака и некоторых микроэлементов. Если E. coli использует многочисленные ферменты, чтобы превращать пищу в живую материю, то мишеней для рентгеновского облучения у Тейтема должно было оказаться достаточно. Даже если бы облучение привело к появлению всего нескольких мутантных бактерий нужного типа, благодаря «роскошному росту», которым знаменита E. coli, ученый смог бы их увидеть. Ведь одна — единственная бактериальная клетка E. coli способна очень быстро, всего за сутки, дать колонию, видимую невооруженным глазом.
Читать дальшеИнтервал:
Закладка: