Ирина Богданова - Концепции современного естествознания. Шпаргалки

Тут можно читать онлайн Ирина Богданова - Концепции современного естествознания. Шпаргалки - бесплатно ознакомительный отрывок. Жанр: Прочая научная литература. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Ирина Богданова - Концепции современного естествознания. Шпаргалки краткое содержание

Концепции современного естествознания. Шпаргалки - описание и краткое содержание, автор Ирина Богданова, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
В книге кратко изложены ответы на основные вопросы темы «Концепции современного естествознания». Издание поможет систематизировать знания, полученные на лекциях и семинарах, подготовиться к сдаче экзамена или зачета.
Пособие адресовано студентам высших и средних образовательных учреждений, а также всем интересующимся данной тематикой.

Концепции современного естествознания. Шпаргалки - читать онлайн бесплатно ознакомительный отрывок

Концепции современного естествознания. Шпаргалки - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Ирина Богданова
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

28. Формирование термодинамической картины мира

Формирование термодинамической картины мира связано с быстрым ростом промышленного прогресса в XIX в., получившего название промышленной революции. Развитие капитализма способствовало ускоренному количественному и качественному росту технических изобретений, причем основанных на самых передовых научных идеях. Человечество открыло для себя паровой котел. Стали изобретаться и внедряться в производство все новые и новые паровые машины. Их использовали сначала стационарно (паровые двигатели для помола зерна, для суконных и других мануфактур), затем стали применять и для замены традиционного средства передвижения (животные), поставив паровую машину на рельсы. Так возникли первые паровозы. Мир начал стремительно развиваться. Наука полностью вышла из-под контроля Церкви, в обществе возникло понимание, что технические изобретения способствуют и росту благосостояния, делают жизнь удобнее и приятнее.

Наука откликнулась на новые желания общества: ученые включились в изучение теплоты, занялись теоретическими исследованиями, например, Фурье вывел дифференциальное уравнение теплопроводности, Никола Карно занялся увеличением работоспособности тепловых машин, Клапейрон обратил внимание на исследование свойств газообразного вещества и вывел уравнение состояния газа, физик Клаузиус разработал принцип эквивалентности теплоты и работы, ввел понятия внутренней энергии и взаимопревращения энергии.

Эксперимент стал ведущим средством для проверки жизнеспособности новых теорий. Срок от экспериментальной проверки до технического внедрения сократился до минимального. Классическая механика для этого общества устарела. Она не отвечала духу времени. Сложные явления оказалось невозможным объяснить в позиций классической механики. К таким явлениям относились тепловая энергия и понятие фазового перехода. Не укладывающимися в теорию при изучении теплоты оказались такие факты, как наличие одинаковых следствий при разных причинах и несоответствие состояния атомов состоянию системы в целом. Новая теория получила название термодинамической, а новая картина мира – термодинамической картины мира.

29. Закон сохранения и превращения энергии в механике

В механике существовало понятие механической работы, которое определялось произведением приложенной силы на энергию, необходимую для производства работы: А = F · x. Способов передачи кинетической энергии другому телу в механике было всего два: либо приложение некой силы к другому телу, либо толчок при ударе (откуда и все рассуждения о первотолчке Бога). Если другое тело перемещалось, то полученная им кинетическая энергия растрачивалась полностью. Но в некоторых случаях такая энергия не растрачивалась (сжатие пружины, подъем тела на высоту), а накапливалась (например, как в сжатой пружине). Накопленная, но не использованная энергия называлась потенциальной.

Потенциальная энергия, по современным понятиям, накапливается в составляющих тело мельчайших частицах. Механика не занималась состоянием частиц, она ограничивалась признанием того, что потенциальной энергией обладают деформированные тела, застрявшие в процессе деформации. Величина потенциальной энергии в механике определяется величиной работы, которую данное тело может совершить, приходя в равновесное состояние с системой тел (разжавшаяся пружина, опущенный вниз груз).

Расчет был верен при соблюдении двух условий: изолированности всей системы и ее консервативности (то есть независимости от движения и зависимости от взаимного расположения или конфигурации тел).

В то же время расчет становился неверным, если работа данных сил зависела от формы пути или силы зависели от скорости движения, если в действие включались «непредусмотренные» силы, такие как сила трения (при этом часть работы рассеивается). Грубо говоря, точно рассчитать работу в механике можно было, исключив «лишние» факторы, то есть перейдя с теоретического на практический уровень, где система по определению не может быть консервативной и изолированной.

По сути, закон сохранения механической энергии работал только для определенного типа явлений, когда трением можно было пренебречь (например, при коротком времени воздействия). Массированный переход к внедрению технических изобретений из лабораторий в промышленное производство требовал прежде всего ответа на вопрос, как и куда уходит потенциальная энергия, совершая работу. Классическая механика ответить на него не могла.

30. Переход от теплородной к кинетической теории теплоты

Теплота и температура как понятия до середины XIX в. были в естествознании синонимами. Этому способствовало существование дополнительного компонента – теплорода . Под теплородом понималась особая составляющая всех материальных тел, способная изнутри нагревать эти тела. Теплород пытались выявить экспериментально, ничего не нашли, но тем не менее признали, что это тончайшая жидкость, которую тело впитывает от солнца, невидимая, невесомая и воспринимаемая органами чувств и приборами как холод или тепло. Уже само определение теплорода должно было скептически настроенных ученых насторожить. Смертельный удар по теплороду нанес ученый Румфорд.

Он решил провести опыты с трением. Теория теплорода объясняла, что при трении из объектов выжимается жидкий теплород, из-за чего изменяется их теплоемкость. Румфорд провел эксперимент по сверлению пушечного ствола и четко зафиксировал результаты: время сверления 150 минут, за счет трения совершена работа, достаточная для испарения 12 кг воды, в то же время получено 270 г металлической стружки, имеющей ту же теплоемкость, что и отливка.

Поскольку источник теплоты, происходящей от трения, был неисчерпаем, а изолированное тело или система тел не может поставлять теплород без ограничения, то полученная теплота теплородом объясняться не может. Так было доказано, что теплорода не существует. В 1827 г. Карно провел теоретический анализ процесса превращения теплоты в работу, а Майер установил механический эквивалент теплоты. Опытным путем он пришел к выводу, что теплоемкости газа при постоянном давлении (Ср) и при постоянном объеме (Сv) неодинаковы (Ср > Сv). Рассматривая теплоту как «силу», то есть энергию, Майер объяснил неодинаковость теплоемкости. При вычислении теплоты по формуле dС = Ср – Сv, он сопоставил теплоту с работой А и получил механический эквивалент теплоты. Его исследования дополнил Джоуль, получивший точный результат механического эквивалента теплоты. Для этого он провел эксперимент, позволивший соотнести затраченную механическую работу с процессом нагревания жидкости: механическую работу выполняла опущенная в жидкость вращающаяся лопатка, нагревание жидкости регистрировалось термометром. В результате работ Майера, Джоуля и Гельмгольца был открыт закон сохранения энергии.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Ирина Богданова читать все книги автора по порядку

Ирина Богданова - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Концепции современного естествознания. Шпаргалки отзывы


Отзывы читателей о книге Концепции современного естествознания. Шпаргалки, автор: Ирина Богданова. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x