Ирина Богданова - Концепции современного естествознания. Шпаргалки
- Название:Концепции современного естествознания. Шпаргалки
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Ирина Богданова - Концепции современного естествознания. Шпаргалки краткое содержание
Пособие адресовано студентам высших и средних образовательных учреждений, а также всем интересующимся данной тематикой.
Концепции современного естествознания. Шпаргалки - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Клеточный уровень представлен клеткой – самостоятельно функционирующей элементарной биологической единицей, присущей всем живым организмам, на уровне клетки происходят биосинтез и реализация наследственной информации; у одноклеточных организмов клеточный уровень совпадает с организменным.
Биологическая мезосистема.Тканевый уровень образует совокупность клеток с одинаковым типом организации, здесь наблюдается сходство между всеми живыми существами, это уровень всех многоклеточных организмов, отличающий их от одноклеточных. Органный уровень представлен совместно функционирующими клетками, относящимися к разным тканям, шесть основных тканей входят в состав органов всех животных и шесть основных тканей образуют органы у растений. Организменный уровень имеет огромное разнообразие форм, представляет многообразие организмов, относящихся к разным видам или в пределах одного вида, что объясняется усложнением комбинаций единиц низшего порядка.
Биологическая макросистема.Популяционный уровень представляет собой совокупность организмов одного вида, населяющих определенную территорию, то есть популяцию, которая является элементарной единицей эволюционного процесса. Биоценотический уровень включает исторически сложившиеся устойчивые сообщества популяций различных видов, связанных между собой и окружающей средой обменом веществ, энергии и информации. Биосферный уровень включает всю совокупность биогеоценозов и обуславливает все процессы, протекающие в биосфере.
77. Термодинамические процессы в живых системах
В классической термодинамике рассматриваются изолированные (замкнутые) или равновесные системы. Для замкнутых систем характерны простейшие расчетные уравнения, основанные на ряде характеристик: объем (V), работа (A), давление (P), температура (T), теплота (Q), внутренняя энергия тела (U). Для этих систем Т является производной от энергии, а запас энергии всегда имеет положительную величину, поскольку даже при Т = 0 К существует колебательное и вращательное движение молекул (то есть их тепловое движение).
Теплота является одной из форм энергии, которую получает или передает система, работа выражается равенствами А = F · S, A = P · V и определяется силой действия на систему, а внутренняя энергия тела состоит из суммы энергии атомов, молекул, электронов:
U = Uпоступ движ молек+ Uядер+ Ue + …
Ек и Еп данной системы в целом не учитывается. Классическая термодинамика сводится к двум началам термодинамики :
1) закону сохранения и превращения энергии (Q = U + A, где U – изменение внутренней энергии);
2) закону максимального роста энтропии при необратимых процессах до достижения системой равновесия
Живые системы не являются замкнутыми. Открытость системы – главное условие для ее существования, то есть если бы законы классической термодинамики выполнялись в открытых живых системах, они были бы обречены на смерть. Но этого не происходит, хотя законы термодинамики работают. Для живых систем в расчеты включается также и среда, с которой обменивается энергией живое существо, таким образом, термодинамические процессы существуют для единого комплекса: живая открытая система + внешняя среда = замкнутая система.
Согласно первому закону термодинамики получаемое организмом количество энергии существует в виде: а) выделяемого тепла; б) совершаемой работы или выделяемых веществ; в) теплоты сгорания веществ, синтезированных за счет энергии, поступившей извне.
Согласно второму закону термодинамики энтропия изменяется в ходе процессов, происходящих в самой живой системе при обмене веществом и энергией с окружающей средой, и не разрушает систему, а переходит во внешнюю среду; при высокой скорости роста энтропии организм погибает.
78. Теорема Пригожина для открытых термодинамических систем
По теореме Пригожина: в открытой термодинамической системе, предоставленной самой себе, при неизменных условиях прирост энтропии уменьшается до тех пор, пока она не достигнет стационарного динамического равновесия; в состоянии динамического равновесия прирост энтропии минимален.
В открытой живой системе на протяжении ее существования происходит распад элементов, приводящий к росту положительной энтропии (то есть неупорядоченности системы), поэтому живая система компенсирует неупорядоченность внутренней работой (синтез элементов взамен распавшихся) и процессом с негэнтропией (отрицательной энтропией), который противодействует росту положительной энтропии и создает упорядоченность системы. Живые системы, запуская негэнтропию, стремятся к стабильности.
Гетеротрофные организмы (потребляющие для жизни только органическую пищу) получают энергию в результате химических реакций; низкая энтропия связана с тем, что для питания они используют высокоструктурированные органические вещества, обладающие низкой энтропией (высокой
степенью упорядоченности), а выводят из организма отходы жизнедеятельности с высокой энтропией. Гетеротрофные организмы упорядочивают себя благодаря самой структуре питательных веществ. Автотрофные организмы (синтезирующие питательные вещества из неорганических соединений с помощью фотосинтеза) получают энергию из солнечного света, то есть электромагнитного излучения с низкой энтропией, их существование зависит от условий среды (нет света – нет фотосинтеза, гибель). Живые системы, в которых происходят необратимые термодинамические процессы, способны существовать только благодаря наличию обмена веществ, который не дает расти энтропии. Живые системы нельзя рассматривать в отрыве от окружающей среды, вместе они составляют устойчивые термодинамические системы, для которых второе начало термодинамики справедливо: живая система берет из внешней среды продукты питания и отдает во внешнюю среду продукты распада, поэтому в комплексе «живая система + среда» энтропия растет. Для живой системы это означает, что внутри нее существует упорядоченность, а во внешней среде за счет деятельности живой системы упорядоченность уменьшается.
79. Саморегуляция живого организма
Для того чтобы живой организм мог существовать, в нем должны происходить процессы управления и регулирования. Под управлением понимается процесс, позволяющий организму сохранить элементы своей структуры, поддерживать режим своей деятельности и реализовывать цели этой деятельности согласно существующим алгоритмам. Под регулированием понимают функции системы, позволяющие контролировать необходимые для жизни параметры, изменять их в согласии с заложенной программой (программное регулирование) или в зависимости с условиями внешней среды (следящее регулирование).
Читать дальшеИнтервал:
Закладка: