Виктор Балабанов - Нанотехнологии. Правда и вымысел
- Название:Нанотехнологии. Правда и вымысел
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Виктор Балабанов - Нанотехнологии. Правда и вымысел краткое содержание
В книге разрушаются многочисленные мифы и стереотипы, связанные с нанотехнологиями.
Нанотехнологии. Правда и вымысел - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
В зависимости от размера и химического состава наночастицы также обладают фотолюминесценцией в видимом и ближнем инфракрасном диапазоне.
Квантовые точки могут производиться и поставляться на рынок наноматериалов в виде растворов в таких неполярных органических растворителях, как гексан, толуол, хлороформ или даже в виде сухих порошков.
В то же время следует указать, что не стоит так просто относить все, что имеет наноскопические, а тем более микроскопические размеры, к нанотехнологиям, ведь тогда, например, зубной порошок, муку, крахмал и многие другие материалы тоже следует называть нанотехнологиями. Трубочист только и имеет дело с нанообъектом (сажей), но это же не значит, что он специалист по нанотехнологиям.Создание искусственных наноматериалов
Нанотехнологии – это технологии XXI века. И страна, которая будет их внедрять, станет лидером XXI века…
А. Д. Жуков, вице-премьер Правительства Российской Федерации
Для исследования объектов и процессов нанотехнологий, создания наносистем и развития наноиндустрии необходимо было разработать эффективные способы получения наноструктур и наноматериалов в достаточном (коммерческом или промышленном) количестве.
Исходным сырьем для наноматериалов являются в первую очередь, металлы и их оксиды (например, порошки оксида титана, оксида кобальта и др.), монтмориллонит, природные и синтетические полимеры. Кроме того, в России имеются ценные отходы производств, переработка которых позволяет получать компоненты, используемые в нанотехнологиях для выпуска продукции с достаточно высокими эксплуатационными свойствами. В частности, при синтезе нанополимерных композиционных материалов с рекордными физико-химическими и эксплуатационными характеристиками. Наносистемы на основе природных полимеров могут служить исключительно эффективными носителями биологически активных веществ, сорбентов и других материалов, которые широко используются в медицине, фармацевтике, при решении экологических проблем, связанных с утилизацией токсичных компонентов почвы, воды, атмосферы, в агропромышленном комплексе.
Наибольшее распространение в настоящее время получили нанодисперсные (ультрадисперсные) порошковые материалы.
Для их производства применяются следующие технологии: восстановление, электролитический метод, разновидности золь-гель технологии и плазмохимический метод.
1. Получение ультрадисперсных порошковых материалов восстановлением – один из самых дешевых методов, широко используемых для производства высокочистых металлических порошков.
2. При электролитическом методе применяется электролиз водных растворов, дающий порошки Fe, Cu, Ni, а также расплавов солей Ti, Zr, Nb, Ta, Fe, U, что, естественно, повышает себестоимость получаемой конечной продукции. Данная технология обеспечивает получение частиц с размерами в несколько десятков нанометров, имеющих дендритную форму.
3. При синтезе нанопорошков методом золь-гель технологии в предварительно разогретую смесь первичного реагента с необходимыми добавками быстро добавляется второй реагент. В процессе химической реакции образуется пересыщенный раствор заданного соединения, стремительно проходящего нуклеацию (в данном случае – начальная стадия фазового перехода от жидкого агрегатного состояния вещества к твердому) и вступающего в стадию роста кристаллов. Создание условий, при которых продолжительность нуклеации значительно меньше стадии роста, позволяет получать кристаллы с достаточно стабильными нанометрическими размерами.
4. Разновидность данного метода заключается в том, что в начале готовится «холодная» смесь реагентов, в которой скорость образования целевого вещества незначительна. При нагревании приготовленного раствора до необходимых температур образуется заданный продукт с концентрацией, достаточной для нуклеации. После быстрой и интенсивной нуклеации концентрация падает, и дальше происходит только рост образовавшихся частиц. В период роста кристаллов поддерживается температура, при которой процесс образования целевого вещества медленнее процесса его кристаллизации.
Достоинство обеих разновидностей золь-метода – возможность управлять размером, формой и степенью кристалличности наночастиц, варьируя комбинацию температуры и соотношения концентраций исходных реагентов и стабилизатора. Осажденные наночастицы отделяют от реагента в центрифугах. Золь-метод обеспечивает возможность формирования достаточно монодисперсных наночастиц различных полупроводников и металлов. Как мы видим, именно золь-методами получают радиоактивные материалы, при этом особое место отводится качеству и производительности задействованных центрифуг.
5. Наиболее рационально получать нанодисперсные порошки тугоплавких металлов (W, Mo, Ni) и их соединений (карбидов, нитридов и др.) плазмохимическим методом, представляющим собой восстановление металлов из их соединений под действием восстанавливающих газов. Электрической дугой высокой интенсивности в плазмотроне поддерживается плазма с температурой до 10 000 °C. При такой температуре в плазме, через которую пропускают газообразный восстановитель (водород или углеводороды и конвертированный природный газ), исходный материал расплавляется, а затем конденсируется в твердую дисперсную фазу.
Для получения фуллеренов оптимальным материалом является графит, поскольку он сам изначально имеет много общего со структурой фуллеренов. Однако в настоящее время ведутся интенсивные поиски и других способов синтеза, в которых исходным сырьем служат, например, смолистые остатки пиролиза углеродсодержащих материалов, нафталина и ряда других материалов.
В таблице 6 представлены наиболее распространенные способы получения наноматериалов.
Таблица 6.Основные способы получения наноматериалов
Известны работы, в которых электрическую дугу между электродами пропускают в среде растворителя – толуола и бензола. При этом, как показывает последующий масс-спектрометрический анализ, растворитель заполняется кластерами углерода с числом атомов, меняющимся от 4 до 76.
Газофазный метод (при 4000 °C и выше), обычно используемый для получения фуллерена С60СНТ, годится только для «гостевых» молекул, которые термически стабильны и могут подвергаться сублимации или испарению.
Наиболее эффективный способ получения фуллеренов основан на термическом разложении графита. Используется как электролитический нагрев графитового электрода, так и лазерное облучение поверхности графита. На рис. 24 показана простейшая схема установки для получения фуллеренов, предложенная В. Кречмером.
Читать дальшеИнтервал:
Закладка: