Александр Громов - Удивительная Солнечная система

Тут можно читать онлайн Александр Громов - Удивительная Солнечная система - бесплатно ознакомительный отрывок. Жанр: Прочая научная литература, издательство Array Литагент «Эксмо», год 2012. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Александр Громов - Удивительная Солнечная система краткое содержание

Удивительная Солнечная система - описание и краткое содержание, автор Александр Громов, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Солнечная система – наш галактический дом. Она останется им до тех пор, пока человечество не выйдет к звездам. Но знаем ли мы свой дом? Его размеры, адрес, происхождение, перспективы на будущее и «где что лежит»?
Похоже, что мы знаем наш дом недостаточно. Иначе не будоражили бы умы открытия, сделанные в последние годы, открытия подчас удивительные и притом намекающие на то, какую прорву новых знаний мы должны обрести в дальнейшем. Уже в наше время каждая новая книга о Солнечной системе устаревает спустя считаные годы. Очень уж много информации приносят телескопы и межпланетные аппараты. Сплошь и рядом астрономические исследования и даже эксперименты кардинально меняют старые представления о том закоулке Галактики, где мы имеем удовольствие жить.
Цель этой книги – дать читателю современное представление о Солнечной системе как части Галактики.

Удивительная Солнечная система - читать онлайн бесплатно ознакомительный отрывок

Удивительная Солнечная система - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Александр Громов
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Но есть в гипотезе Шмидта одно нехорошее качество: предполагается, что планетная система у звезды – скорее исключение, чем правило. Не каждой ведь звезде «повезло» в течение своей жизни пролететь сквозь подходящее облако. В этом смысле гипотеза Шмидта не так уж привлекательнее космогонической гипотезы Джинса.

Джеймс Джинс, замечательный английский физик, создавший, например, теорию газовых конденсаций (см. выше), предложил свою знаменитую космогоническую гипотезу, сильно будоражившую астрономов и физиков в первой трети XX века. В том, что само Солнце образовалось путем конденсации межзвездной материи, Джинс не сомневался, но планеты, согласно его гипотезе, образовались иначе – в результате тесного сближения (почти столкновения) Солнца с другой звездой. При этом на поверхности Солнца образовалась громадная приливная волна, которая под действием притяжения другой звезды превратилась в струю вещества, оторвавшуюся от Солнца, но не последовавшую за «чужой» звездой, а сконденсировавшуюся в планеты Солнечной системы. Гипотеза Джинса была «экзотической» с самого начала: ведь получалось, что планетные системы в Галактике можно буквально пересчитать по пальцам одной руки, так как случайные тесные сближения звезд вне галактического ядра – явление исключительно редкое. С другой стороны, гипотеза Джинса довольно непринужденно объясняла, почему наиболее массивные планеты – Юпитер и Сатурн – находятся не близко к Солнцу и не далеко, а где-то посередине. Струя вырванного из Солнца вещества, по мысли Джинса, имела веретенообразную форму, то есть была наиболее толстой посередине, утончаясь к краям. Следовательно, если где-то и могли возникнуть планеты-гиганты, то прежде всего посередине струи на средних расстояниях от Солнца. Просто и элегантно!

Увы. Сначала расчеты показали, что планеты, образовавшиеся таким образом, будут иметь очень эксцентричные (резко эллиптические) и притом близкие к Солнцу орбиты, чего не наблюдается. В дальнейшем было вычислено, что никаких планет из вырванной струи вообще не получится – они просто не смогут сконденсироваться. Кстати, гипотеза Джинса также оказалась не в состоянии объяснить, почему основная часть момента количества движения в Солнечной системе сосредоточена в планетах, а не в центральном светиле.

Предпринимались попытки модифицировать гипотезу Джинса, избавив ее от присущих ей недостатков. Например, предлагался сценарий тесного сближения Солнца не со звездой, а с протозвездой – рыхлым объектом небольшой (но звездной) массы. В этом случае струя вещества отрывалась уже от протозвезды и могла иметь весьма большой момент количества движения. По сути эта модификация – «мостик» между гипотезами Джинса и Шмидта.

Все равно, однако, оставалась одна, но существенная «неприятность»: выходило, что планетных систем в Галактике очень мало (одна на 100 тыс. звезд), в то время как данные наблюдений говорили скорее об обратном. Еще полвека назад американские астрономы Абт и Леви выполнили тщательное исследование 123 ближайших к нам звезд солнечного типа. Обнаружилось следующее: из 123 звезд 57 оказались двойными, и – тройными и 3 – четверными. С имеющейся на тот момент аппаратурой Абт и Леви не смогли выявить маломассивные компоненты кратных систем, каковыми компонентами могут быть тусклые красные карлики, коричневые карлики и… планеты. Кривые экстраполяции построенных графиков не говорили прямо, но намекали: практически все звезды солнечного типа должны либо входить в состав кратных систем, либо иметь планеты, либо и то и другое.

Уже эти – по сути чисто предварительные – исследования заколотили очередной гвоздь в крышку гроба гипотезы Джинса.

А как вообще можно установить наличие невидимого спутника у какой-либо звезды?

Тремя методами. Первый, блистательно сработавший, например, при открытии спутника Сириуса, основан на точных измерениях движения звезды. Если окажется, что траектория звезды хотя бы слегка волнообразна, это означает, что вокруг звезды обращается спутник (или спутники). И хотя траектория движения Сириуса очень заметно волнообразна, поскольку его спутник – белый карлик нормальной звездной массы, а от притяжения планет следует ждать в сотни раз меньшего возмущения, метод остается актуальным и поныне.

Второй метод основан на периодическом доплеровском смещении спектральных линий звезды, возникающих из-за движения звезды вокруг общего с невидимым спутником центра масс. Радиальная составляющая скорости звезды при этом периодически меняется на весьма незначительную величину, которую в ряде случаев все-таки можно измерить. Именно так было открыто некоторое количество экзопланет (планет, обращающихся вокруг других звезд).

Суть третьего метода – наблюдать периодические, крайне незначительные уменьшения блеска звезды при прохождении планеты на его фоне. К сожалению, этот метод работает лишь в том случае, если плоскость орбиты планеты ориентирована так, мы можем наблюдать периодические «затмения» части звездного диска планетой. Однако и этот метод подходит для открытия экзопланет, что и подтверждает практика.

К настоящему времени открыты уже многие сотни экзопланет. Их открытие превратилось в своего рода спорт – кто больше? Как бы ни были интересны результаты «спортивных состязаний», оставим их в покое и вообще отложим пока разговор об экзопланетах. Сейчас для нас важно лишь одно: Солнечная система далеко (и очень далеко) не уникальна, планетные системы у звезд широко распространены, если не повсеместны.

В последнее время теоретиками разработано немало моделей формирования звезд с планетными системами; нет смысла подробно освещать их. Ясно лишь, что классическая модель Хаяши – Накано при всех ее достоинствах все же очень приблизительна: в ней не учитываются вращение звезды, вихревые движения, магнитные поля, изначальная неоднородность вещества протозвездного облака по плотности и температуре и т. д. Этого недостатка лишены более поздние теоретические конструкции. Например, в модели Ларсона (1969 год), построенной для изначально неоднородного протозвездного облака солнечной массы, очень быстро образуется непрозрачное для инфракрасного излучения ядро, а скорость падения на него вещества получается порядка 15 км/с, что гораздо выше, чем в модели Хаяши – Накано. Созданы модели гравитационного сжатия несферического облака (например, цилиндрического), в некоторых моделях учтено влияние магнитного поля и т. п.

Любопытно, что результат моделирования оказался сильно зависящим от принятого численного метода расчетов, так что теоретикам пришлось потратить немало времени на их сверку. Менее удивительно то, что результат оказался весьма сильно зависящим от принятых начальных условий. Скажем, при одних начальных условиях вокруг протозвезды образовывался газовопылевой диск, а при других – тор («бублик»). Это говорит о том, что и в реальности скорее всего реализуются самые разные сценарии.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Александр Громов читать все книги автора по порядку

Александр Громов - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Удивительная Солнечная система отзывы


Отзывы читателей о книге Удивительная Солнечная система, автор: Александр Громов. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x