Александр Громов - Удивительная Солнечная система

Тут можно читать онлайн Александр Громов - Удивительная Солнечная система - бесплатно ознакомительный отрывок. Жанр: Прочая научная литература, издательство Array Литагент «Эксмо», год 2012. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Александр Громов - Удивительная Солнечная система краткое содержание

Удивительная Солнечная система - описание и краткое содержание, автор Александр Громов, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Солнечная система – наш галактический дом. Она останется им до тех пор, пока человечество не выйдет к звездам. Но знаем ли мы свой дом? Его размеры, адрес, происхождение, перспективы на будущее и «где что лежит»?
Похоже, что мы знаем наш дом недостаточно. Иначе не будоражили бы умы открытия, сделанные в последние годы, открытия подчас удивительные и притом намекающие на то, какую прорву новых знаний мы должны обрести в дальнейшем. Уже в наше время каждая новая книга о Солнечной системе устаревает спустя считаные годы. Очень уж много информации приносят телескопы и межпланетные аппараты. Сплошь и рядом астрономические исследования и даже эксперименты кардинально меняют старые представления о том закоулке Галактики, где мы имеем удовольствие жить.
Цель этой книги – дать читателю современное представление о Солнечной системе как части Галактики.

Удивительная Солнечная система - читать онлайн бесплатно ознакомительный отрывок

Удивительная Солнечная система - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Александр Громов
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Идея Б.М. Понтекорво была позднее реализована в США в виде 400-тысячелитрового резервуара с перхлорэтиленом, довольно дешевым веществом, использующимся как моющая жидкость и несравненно менее опасным, чем газообразный или сжиженный хлор. И сразу же начались проблемы.

Поток солнечных нейтрино оказался в 3-10 раз ниже, чем получалось из разных моделей Солнца. Правда, перхлорэтиленовый детектор «ловил» преимущественно те нейтрино, которые образуются в боковой ветви протон-протонной реакции, но это обстоятельство, разумеется, учтено в расчетах ожидаемого потока. Позднее были созданы гигантские нейтринные детекторы на основе колоссальных резервуаров воды, и результат был в общем-то тот же: наблюдался серьезный – в разы – дефицит солнечных нейтрино.

Предпринимались попытки как-то подкорректировать солнечные модели, чтобы изменить энергетический спектр покидающих Солнце нейтрино, а следовательно, и вероятность их взаимодействия с рабочим веществом детектора, но они не имели особого успеха. Очень интересную гипотезу выдвинул в 1972 году Фаулер. Суть ее – в автоколебательном процессе в недрах Солнца. Согласно этой гипотезе, развитой впоследствии Эзером и Камероном, вещество в глубинных слоях Солнца из-за развития вращательной неустойчивости периодически – примерно раз в сто миллионов лет – бурно перемешивается. Из-за этого в центральные, горячие области Солнца поступает с периферии гелий-3 и тут же реагирует с большим энерговыделением. Нагреваясь, центральные области расширяются, что, естественно, приводит к понижению температуры и замедлению ядерных реакций. В начале перемешивания должна наблюдаться нейтринная вспышка, а затем падение количества фиксируемых нейтрино примерно на порядок. Если сейчас как раз такой момент, то находит и объяснение дефицит солнечных нейтрино. Расчеты Эзера и Камерона показали, что длительность периода дефицита нейтрино должна составлять около 10 млн лет.

Между прочим, расширение центральных областей Солнца должно приводить и к уменьшению его фотонной светимости! Ее теоретическая зависимость от времени несколько иная, чем у нейтрино (хотя бы потому, что фотонам требуется значительное время, чтобы выбраться наружу), но общий характер тот же: быстрый спад, затем медленный рост до нормального уровня. И это, по мысли авторов гипотезы, непринужденно объясняет причину ледниковых периодов в геологической истории Земли.

Гипотез, пытающихся объяснить те или иные аспекты прошлого Земли (скажем, массовые вымирания) с чисто астрономических позиций, вообще придумано множество, и практически все они не выдерживают испытания на прочность. Подвергнуть такому испытанию гипотезу Эзера и Камерона тем более легко, что ледниковые периоды вплоть до протерозоя известны, что называется, наперечет.

Хочу подчеркнуть: климаты далекого прошлого – это не гадание на кофейной гуще, а строгая наука. Палеотемпературы впервые измерил американец Юри еще в 1950 году, пользуясь методом, основанным на соотношении изотопов кислорода 18O и 16O. Наличие либо отсутствие в соответствующих слоях следов той или иной биоты тоже помогает делу. Например, если найдены отпечатки кораллов, это значит, что море, в котором они жили, было теплым. Наконец, давно известны прямые свидетельства оледенений в виде скал с характерными бороздами и царапинами, оставленными вмороженными в ползущий ледник валунами. Есть и другие признаки, по которым можно довольно точно судить о климате, их много, и не стоит на них останавливаться в астрономической книжке.

Сейчас как раз ледниковый период. Он начался в плейстоцене примерно 1,5 млн лет назад и вроде пока не собирается заканчиваться. Тем очевидным фактом, что на месте Ботнического залива в нашу эпоху нет трехкилометровой толщи льда, а языки ледника не доходят до Киева и Самары, мы обязаны современному межледниковью, начавшемуся около 13 тыс. лет назад. Во время плейстоценового оледенения уже было несколько таких межледниковий, так что нынешний климатический режим на Земле можно с оговорками назвать «штатным». Ну а раньше?

Весь мезозой и начало кайнозоя на Земле держалась термоэра – в отличие от нынешней криоэры. В термоэрах климат на Земле был выровненным, и в атмосфере существовала единственная конвективная ячейка, переносящая тепло из экваториальной зоны к полюсам. На экваторе расстилались сухие пустыни, а в более высоких широтах господствовал субтропический и теплоумеренный климат (лишь вблизи полюсов – умеренный, однако и там умудрялись выживать некоторые виды динозавров). Иными словами, не существовало ни тропического, ни арктического климата. Оледенений в мезозое не было вообще. Предшествующее же нашему оледенение, когда климат был похож на современный, то есть чересчур жаркий в тропиках и чересчур холодный в высоких широтах, случилось в каменноугольном периоде около 300 млн лет назад (Гондванское, оно же карбоновое, оледенение).

Это уже не 100 млн лет, как следовало бы из гипотезы Фаулера – Эзера – Камерона. Но пусть. В конце концов, главное, чтобы была периодичность, верно?

Пойдем дальше в глубь геологических веков. Еще одно оледенение, оставившее следы в слоях, соответствующих ордовикскому периоду (495–445 млн лет назад), не было очень масштабным, и мы его учитывать не будем. А что раньше?

А раньше – вблизи границы венда и кембрия – имело место сразу несколько оледенений, мощнейшее из которых – Лапландское – было совершенно грандиозным. Датировка – примерно 600 млн лет. Выходит, периодичность все-таки существует, пусть и имеет втрое больший период, чем было вычислено?

Как бы ни хотелось простых объяснений – увы, не получается. Датировка весьма крупных оледенений перед Лапландским: 710, 820 и 850 млн лет. Ну и где же тут периодичность? Примечательно, что многие сторонники солярной гипотезы как причины оледенений отбрасывают ее, чуть только глубже вникнут в тему. Остаются лишь немногочисленные фанатики, раз за разом тщетно пытающиеся сложить этот пазл из датировок…

Проблема дефицита нейтрино была в конце концов разрешена способом, который не так давно казался весьма экзотическим. Объяснение предложил Б.М. Понтекорво еще в 1969 году, но лишь относительно недавно его удалось проверить в эксперименте. Суть в том, что нейтрино бывают трех видов: электронные, мюонные и тау-лептонные (таонные). Идея Понтекорво состояла в том, что электронные нейтрино (которые «ловятся» детекторами) могут спонтанно превращаться в мюонные и таонные, а также обратно. Это явление называется нейтринными осцилляциями. Таким образом, лишь треть времени солнечные нейтрино проводят в виде, пригодном для их обнаружения. А значит, реально их втрое больше, и для объяснения такого потока уже годятся давно существующие модели Солнца.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Александр Громов читать все книги автора по порядку

Александр Громов - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Удивительная Солнечная система отзывы


Отзывы читателей о книге Удивительная Солнечная система, автор: Александр Громов. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x