Александр Громов - Удивительная Солнечная система
- Название:Удивительная Солнечная система
- Автор:
- Жанр:
- Издательство:Array Литагент «Эксмо»
- Год:2012
- Город:Москва
- ISBN:978-5-699-55311-2
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Александр Громов - Удивительная Солнечная система краткое содержание
Похоже, что мы знаем наш дом недостаточно. Иначе не будоражили бы умы открытия, сделанные в последние годы, открытия подчас удивительные и притом намекающие на то, какую прорву новых знаний мы должны обрести в дальнейшем. Уже в наше время каждая новая книга о Солнечной системе устаревает спустя считаные годы. Очень уж много информации приносят телескопы и межпланетные аппараты. Сплошь и рядом астрономические исследования и даже эксперименты кардинально меняют старые представления о том закоулке Галактики, где мы имеем удовольствие жить.
Цель этой книги – дать читателю современное представление о Солнечной системе как части Галактики.
Удивительная Солнечная система - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Можно считать, что в первом приближении процесс формирования больших планет подобен процессу формирования звезд, особенно тех небольших звезд, которые являются спутниками более массивных соседок. Точно так же происходит конденсация вещества вокруг случайной флюктуации плотности, вот только таких центров конденсации в протопланетном диске первоначально может быть несколько, причем на пересекающихся орбитах, из-за чего конденсации сливаются, наращивая массу. Строго говоря, нет четкой границы между маломассивными звездами и большими планетами. Казалось бы, звезда отличается от планеты тем, что в ее недрах идут ядерные реакции. Но несколько десятилетий назад были открыты тусклые звезды, названные коричневыми карликами. Уже из того факта, что несколько коричневых карликов обнаружены в сравнительной близости от Солнца, следует, что это весьма распространенный класс звезд. Их массы меньше предела Кумара (0,075 массы Солнца), ниже которого невозможны ядерные реакции на водороде. И действительно, при температуре, скажем, 2 млн К протон-протонная реакция просто не пойдет, не говоря уже об углеродно-азотном цикле и тем более тройной гелиевой реакции. Возможны лишь реакции на легких ядрах (дейтерий, литий), но этих ядер мало, и они могут обеспечить собственную светимость объекта лишь на каком-то этапе, после чего закончатся. Что же обеспечивает светимость коричневого карлика?
Сжатие. То самое медленное сжатие, которое предлагал Гельмгольц в качестве объяснения причины светимости Солнца. И если насчет Солнца он ошибся, то коричневые карлики полностью «ложатся» в его теорию. Для маломассивных и крайне слабых коричневых карликов процесс сжатия, конечно, крайне медлителен и совершенно незаметен, но он есть. И тут возникает терминологическая путаница: считать ли коричневые карлики звездами? С одной стороны, звездами мы называем тела, светящие в оптическом диапазоне собственным, а не отраженным светом. С другой стороны, ядерные-то реакции в таких звездах не идут. Как быть?
Астрономам пришлось принимать «волевое решение». Звездами были «назначены» те красные карлики, чьи массы превышают 0,013 масс Солнца, а менее массивные объекты были причислены к планетам. Граница эта, конечно, чисто условна, как условна та граница количества предметов, с которой начинается куча. Как договорились, так и будет – до тех пор, пока проведенная граница не перестанет удовлетворять слишком многих. Но пока удовлетворяет.
Юпитер имеет массу в тысячу раз меньше массы Солнца, а значит, он очень сильно – в 13 раз – легче той границы масс, за которой объект считается звездой (хотя и «неполноценной»). Однако это все же в 317,8 раз больше массы Земли. Юпитер, конечно, планета. Кто-нибудь может сказать: стоило, мол, огород городить, чтобы доказать то, что и так всем известно? Не будем, однако, поспешны. Да, Юпитер не излучает собственный свет в видимом диапазоне, светя лишь отраженным светом. Но в дальней инфракрасной области ситуация иная: там Юпитер излучает в два с половиной раза больше энергии, чем получает от Солнца. И причина этого излучения – то самое гельмгольцевское сжатие планеты. По расчетам, оно составляет около 1 мм в год, и, конечно, измерить его существующими методами в принципе невозможно. Уверенность в том, что за инфракрасное излучение Юпитера отвечает именно сжатие, дает метод исключения: никакими иными механизмами это явление не объяснить.
Юпитер – самая яркая планета на небе после Венеры. Его видимый поперечник достигает (в противостоянии) 50 секунд дуги. Кроме того, он, как всякая внешняя по отношению к Земле планета, может отходить от Солнца на любое угловое расстояние и довольно медленно перемещается по небу. Это и неудивительно, учитывая период обращения планеты вокруг Солнца: 11,87 года. (Поскольку зодиакальных созвездий как раз 12, можно считать, что каждый год Юпитер переходит в следующее созвездие, что очень удобно для астрологов.) Диск планеты заметно сплюснут с полюсов (1:15), что объясняется высокой скоростью вращения планеты. Как и на Солнце, вращение зональное. Внешние слои атмосферы делают один оборот за 9 ч 50,5 мин., высокоширотные – за 9 ч 55,7 мин. Естественно, газовый шар, вращающийся с такой скоростью, будет сплюснутым.
На 82 % Юпитер состоит из водорода, на 17 % из гелия, а на долю всех оставшихся элементов приходится жалкий 1 %. Ничего общего с составом Земли, зато очень похоже на Солнце! Присутствуют метан, этан, аммиак, кристаллики водяного льда, бисульфида аммония и т. д. Наружные слои атмосферы состоят преимущественно из водорода в молекулярном состоянии. Присутствуют и примеси. Первое, что бросается в глаза при взгляде в телескоп на Юпитер: он полосатый. Само собой, полосы параллельны экватору. Особенно ярко выражены две широкие полосы в «тропических» широтах гигантской планеты. И эти, и другие полосы маркируют собой зоны с различными скоростями вращения. На границах зон возникают завихрения, легко различимые даже в сравнительно небольшой телескоп в виде округлых пятен или фестонов (рис. 37 на цветной вклейке). И неудивительно: скорости движения газа в двух соседних зонах могут отличаться на 300 км/с. Ну как тут не возникнуть завихрениям?
Один вихрь получил всемирную известность: это Большое Красное Пятно (рис. 38 на цветной вклейке) размером 48 на 12 тыс. км (для масштаба: экваториальный радиус планеты 71 492 км). Сколько времени оно существует, сказать трудно. Астрономам оно известно с XVII века. Правда, в последние десятилетия яркость Красного Пятна ослабла, и очень похоже на то, что оно понемногу сойдет на нет. Что ж, рано или поздно возникнет новое! Хотя, конечно, Большое Красное Пятно – образование во всех отношениях выдающееся. Меньшие же по размеру вихри возникают на Юпитере достаточно регулярно. Некоторые из них живут всего-то несколько недель или месяцев, другие остаются на годы. Вихри возникают, сливаются друг с другом, исчезают – словом, ведут себя примерно так же, как циклоны и ураганы на Земле. Например, в марте 2007 года были зафиксированы два атмосферных шторма размером по 4000 км. Нет особых сомнений в том, что причина этих и других гигантских вихрей кроется в собственном энерговыделении планеты и неизбежной конвекции. Согласно результатам моделирования, оба шторма образованы струями нагретого водорода, вырывающимися из-под облачного слоя с глубины в несколько десятков километров, куда не проникают лучи Солнца. Нагреть этот водород мог только сам Юпитер. Частички водяного и аммиачного льда, подхваченные вихрями с порядочной глубины, придали им белый цвет и сформировали нечто вроде «наковальни» грозовых облаков, формирующихся над Землей. Такие образования на Юпитере называются плюмами. Основная разница здесь в масштабах явления: полная высота юпитерианского шторма от подножия до верхушки плюма достигает 120 км – вдесятеро больше, чем на Земле.
Читать дальшеИнтервал:
Закладка: