П.И.Бакулин, Э.В.Кононович, В.И. Мороз - Курс общей астрономии

Тут можно читать онлайн П.И.Бакулин, Э.В.Кононович, В.И. Мороз - Курс общей астрономии - бесплатно полную версию книги (целиком) без сокращений. Жанр: Прочая научная литература. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

П.И.Бакулин, Э.В.Кононович, В.И. Мороз - Курс общей астрономии краткое содержание

Курс общей астрономии - описание и краткое содержание, автор П.И.Бакулин, Э.В.Кононович, В.И. Мороз, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Курс общей астрономии - читать онлайн бесплатно полную версию (весь текст целиком)

Курс общей астрономии - читать книгу онлайн бесплатно, автор П.И.Бакулин, Э.В.Кононович, В.И. Мороз
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

где mpg и mpv – соответственно фотографическая и фотовизуальная звездные величины. В системе U, В, V обычно пользуются двумя показателями цвета: основным (В – V) и ультрафиолетовым (U – В). Поскольку шкала звездных величин определяется через отношение освещенностей, а

нуль-пункт ее выбирается произвольно (см. § 103), в такой же степени оказывается произвольным и нуль-пункт шкалы показателей цвета. Условились считать, что показатель цвета (В – V) равен нулю для звезд класса А0. Показатели цвета звезд более горячих, чем класса А (сильнее излучающих в фотографической области спектра), окажутся отрицательными (т.е. фотографическая звездная величина меньше фотовизуальной). Наоборот, показатели цвета звезд более поздних спектральных классов, чем А, положительны, так как они сильнее излучают в видимой области спектра. В табл. 9 приведены примерные значения показателей цвета звезд различных спектральных классов. Раздел астрофизики, посвященный изучению показателей цвета звезд, называется колориметрией. Его целью является измерение показателей цвета различными методами и нахождение других величин, характеризующих спектральный состав излучения звезд, а также установление связи между этими характеристиками и температурой.

§ 147. Абсолютная звездная величина и светимость звезд

Видимые звездные величины ничего не говорят ни об общей энергии, излучаемой звездой, ни о яркости ее поверхности. Действительно, вследствие различия в расстояниях маленькая, сравнительно холодная звезда только из-за своей относительно большой близости к нам может иметь значительно меньшую видимую звездную величину (т.е. казаться ярче), чем далекий горячий гигант.

Если расстояния до двух звезд известны (см. § 63), то на основании их видимых звездных величин легко найти отношение излучаемых ими действительных световых потоков. Для этого достаточно освещенности, создаваемые этими звездами, отнести к общему для всех звезд стандартному расстоянию. В качестве такого расстояния принимается 10 пс. Звездная величина, которую имела бы звезда, если ее наблюдать с расстояния в 10 пс, называется абсолютной звездной величиной. Как и видимые, абсолютные звездные величины могут быть визуальными, фотографическими и т.д. Пусть видимая звездная величина некоторой звезды равна m, а расстояние ее от наблюдателя составляет r пс. По определению, звездная величина с расстояния 10 пс будет раина абсолютной звездной величине М. Применяя к m и М формулу (7.8), получим (11.2)

где Е и Е0 – соответственно освещенности от звезды с расстояния r пс и 10 пс. Поскольку освещенности обратно пропорциональны квадратам расстояний, то (11.3)

Подставляя (11.3) в (11.2), получим 0,4(m – M) = 2 lg r – 2(11.4)

или M = m + 5 – 5 lg r.(11.5)

Формула (11.5) позволяет найти абсолютную звездную величину М, если известна видимая звездная величина объекта m и расстояние до него r, выраженное в парсеках. Если же абсолютная звездная величина известна из каких-нибудь других соображений, то, зная видимую звездную величину, легко найти выраженное в парсеках расстояние из условия lg r = 1 + 0,2 (m – M).(11.6)

Величина (m – М) называется модулем расстояния. Так как годичный параллакс p светила и расстояние r до него в парсеках связаны

соотношением r = 1/p (см. § 63), то формулу (11.6) можно привести к другому виду:

M = m + 5 + 5 1g p.(11.7)

В качестве примера найдем абсолютную визуальную звездную величину Солнца, видимая визуальная звездная величина которого т¤ = –26m,8 (см. § 103). Расстояние до Солнца Подставляя m¤ и lg r¤ в формулу (11.5), получаем При определении звездной величины (например, визуальной) непосредственно из наблюдений регистрируется только та часть излучения, которая прошла сквозь земную атмосферу, данную оптическую систему и зарегистрирована светочувствительным прибором. Чтобы найти суммарное излучение во всем спектре, необходимо к результатам этих измерений прибавить поправку, Учитывающую излучение, не дошедшее до прибора. Звездная величина, определенная с учетом излучения во всех участках спектра, называется болометрической. Разность между болометрической звездной величиной и визуальной или фотовизуальной называется болометрической поправкой (11.8)

Болометрические поправки вычисляются теоретически. В самое последнее время для этой цели привлекаются результаты внеатмосферных измерений излучения звезд в ультрафиолетовой области спектра. Болометрическая поправка имеет минимальное значение для тех звезд, которые в видимой области спектра излучают наибольшую долю всей своей энергии, и зависит от эффективной температуры звезды (табл. 10).

ТАБЛИЦА 10

Болометрические поправки позволяют определить болометрические светимости тех звезд, для которых известны абсолютные визуальные звездные величины. Пусть Mv – абсолютная визуальная звездная величина некоторой звезды, а Dmbol – болометрическая поправка. Тогда болометрическая абсолютная величина звезды (11.9)

Применим эту формулу к Солнцу, болометрическую поправку для которого примем, округляя значение из табл. 10: Так как абсолютная визуальная звездная величина Солнца его болометрическая абсолютная звездная величина Поток энергии излучаемой звездой по всем направлениям, называется светимостью. Между светимостями L и абсолютными звездными величинами должно выполняться то же соотношение, что и между Е и m в формуле (7.8). Поэтому если обозначить величины, относящиеся к Солнцу и к какой-либо звезде, соответственно значками ¤ и *, то получим (11.10)

Обычно светимость выражают в единицах светимости Солнца, т.e. L¤ = 1 и (11.11)

В зависимости от метода определения звездных величин, входящих в эту формулу, получаем визуальные, фотографические или болометрические светимости. Для болометрических светимостей, подставляя значение и учитывая (11.9), имеем (11.12)

§ 148. Диаграмма спектр – светимость

В самом начале XX в. датский астроном Герцшпрунг и несколько позже американский астрофизик Рессел установили существование зависимости между видом спектра (т.е. температурой) и светимостью звезд. Эта зависимость иллюстрируется графиком, по одной оси которого откладывается спектральный класс, а по другой – абсолютная звездная величина. Такой график называется диаграммой спектр – светимость или диаграммой Герцшпрунга – Рессела (рис. 194). Вместо абсолютной звездной величины можно откладывать светимость (обычно в логарифмической шкале), а вместо спектральных классов – показатели цвета или непосредственно эффективную температуру. Положение каждой звезды в той или иной точке диаграммы определяется ее физической природой и стадией эволюции. Поэтому на диаграмме Герцшпрунга – Рессела как бы запечатлена вся история рассматриваемой системы звезд. В этом огромное значение диаграммы спектр – светимость, изучение которой является одним из важнейших методов звездной астрономии. Оно позволяет выделить различные группы звезд, объединенные общими физическими свойствами, и установить зависимость между некоторыми их физическими характеристиками, а также помогает в решении ряда других проблем (например, в исследовании химического состава, и эволюции звезд). На рис. 194 верхняя часть диаграммы соответствует звездам большой светимости, которые при данном значении температуры отличаются большими размерами. Нижнюю часть диаграммы занимают звезды малой светимости. В левой части диаграммы располагаются горячие звезды более ранних спектральных классов, а в правой – более холодные звезды, соответствующие поздним спектральным классам.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


П.И.Бакулин, Э.В.Кононович, В.И. Мороз читать все книги автора по порядку

П.И.Бакулин, Э.В.Кононович, В.И. Мороз - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Курс общей астрономии отзывы


Отзывы читателей о книге Курс общей астрономии, автор: П.И.Бакулин, Э.В.Кононович, В.И. Мороз. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x