Фрэнк Вильчек - Основы реальности
- Название:Основы реальности
- Автор:
- Жанр:
- Издательство:Манн, Иванов и Фербер
- Год:2021
- Город:Москва
- ISBN:9785001698845
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Фрэнк Вильчек - Основы реальности краткое содержание
Книга лауреата Нобелевской премии по физике для всех, кто хочет приблизиться к пониманию устройства Вселенной.
Основы реальности - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Слабые силы ничего не изгибают и не передвигают, но их важность связана со способностью к трансформации. Эта способность, эффективно использующая чрезвычайную слабость слабых сил, обеспечивает им уникальную, центральную роль в эволюции Вселенной. Слабые силы — своего рода аккумулятор, медленно высвобождающий космическую энергию.
Знакомство с темой удобно начать с распада нейтрона. Это один из самых простых и в то же время важных процессов, за который ответственны слабые силы. Свободный нейтрон с периодом полураспада чуть больше десяти минут практически всегда спонтанно превращается в протон, электрон и антинейтрино. (Антинейтрино — античастица, соответствующая нейтрино.) Поскольку нейтроны и протоны существенно тяжелее остальных частиц, поучительно взглянуть на распад нейтрона под другим углом. Рассмотрим его превращение в протон с высвобождением энергии.
Первое, что надо отметить: в субатомном мире десять минут — это вечность. Для сравнения: время жизни адронов, распадающихся из-за сильных взаимодействий, в которых участвуют кварки и глюоны, составляет крохотную долю секунды. Сильное взаимодействие действует примерно в 10 27, или в 1 000 000 000 000 000 000 000 000 000, раз быстрее. Если исходить из таких стандартов, формирование нестабильности, обусловленной слабой силой и вызывающей распад нейтрона, требует очень длительного времени. Другими словами, это очень слабая нестабильность. Именно поэтому ее причину мы называем слабой силой.
Распад нейтрона — результат превращения одного из двух d -кварков в u -кварк (плюс электрон и антинейтрино). Поскольку нейтрон имеет кварковую структуру udd , а протон — uud , такое превращение кварков обеспечивает превращение нейтронов в протоны.
Хотя слабая сила действительно очень мала, она может делать то, что недоступно другим. Ни сильная, ни электромагнитная, ни гравитационная силы не превращают одни кварки в другие. В то же время слабая сила способна превращать более тяжелые кварки в более легкие. Все «бонусные частицы», вскользь упоминавшиеся в предыдущей главе [76], из-за слабой силы очень нестабильны.
Слабая сила действует на кварки везде, где бы они ни находились. Так, она может превращать в протоны не только свободные нейтроны, но и те, которые находятся внутри атомных ядер. В новом ядре оказывается на один протон больше и на один нейтрон меньше, чем в старом, а также излучаются электрон и антинейтрино. Поскольку число протонов в атоме определяет электрические, а значит, и химические его свойства, этот процесс меняет атом одного химического элемента на атом другого. Именно к этому стремились алхимики, но, по утверждению основоположников современной химии, сделать это искусственным путем невозможно. Слабая сила играет роль природного алхимика.
Это всё, что есть?
Уже в 1929 году Поль Дирак, великий ученый, занимавшийся математической физикой и устранивший элемент случайности в квантовой электродинамике, декларировал: «Фундаментальные законы, необходимые для построения математической теории большей части физики и всей химии, в полной мере известны».
Дирак имел в виду законы квантовой электродинамики в применении к материи, которая считалась состоящей из электронов, фотонов и атомных ядер. Через девяносто лет, вместивших тысячи новых экспериментов, разработок и открытий, смелое заявление Дирака не только выстояло, но и стало еще более очевидным. С пониманием сути сильных и слабых сил расширились и границы понимания фундаментальных законов. «Большая часть физики» стала еще больше. Так, например, в 1929 году физика еще не имела ясного представления о том, откуда берется энергия звезд или какие силы удерживают ядра атомов как единое целое. Сегодня, благодаря тысячам убедительных экспериментов, мы это знаем.
Дирак продолжал так: «Трудность только в том, что использование этих законов приводит к уравнениям слишком сложным, чтобы их можно было решить». Но в его время о современных суперкомпьютерах еще и не мечтали. С их помощью мы стали существенно лучше решать уравнения, появившиеся как результат формулировки фундаментальных принципов. В рамках квантовой теории уравнения КЭД, КХД, общей теории относительности и слабых сил обеспечили появление многих технических новшеств, включая лазеры, транзисторы, ядерные реакторы, магнитно-резонансные томографы (МРТ) и систему GPS.
Тем не менее в ближайшее время химики и инженеры-материаловеды не останутся без работы. Если речь идет о достаточно сложных системах, а не о простых случаях с участием небольших молекул или идеальных кристаллов, предсказывать их поведение путем расчетов «в лоб» не имеет практического смысла. Химики и инженеры редко имеют дело с кварками и глюонами (а по сути, вовсе не имеют). Чтобы продвигаться вперед, им надо оперировать приближениями, исследовать идеализированные системы, строить более быстрые и мощные компьютеры и проводить эксперименты.
Другой вопрос — действительно ли трудность только в том, что фундаментальные уравнения трудно решить? Могут ли быть какие-то значительные эффекты, которые ими совсем не учитываются?
Вместе четыре закона, описывающие четыре фундаментальные силы, составляют то, что иногда называют «Стандартной моделью». Я предпочитаю называть ее «Ядром» (Core) [77]. Вместе эти законы работают как хорошо отлаженный механизм. Есть веские основания полагать, что «Ядро» — совокупность законов КЭД, КХД, гравитации и слабых сил — образует достаточно надежный фундамент для практического применения физики и останется таковым в обозримом будущем.
Одна из причин очевидна. Эти законы проверялись с гораздо большей точностью и в гораздо более разнообразных условиях, чем необходимо для их практического использования в химии, биологии, материаловедении и даже в астрофизике (за исключением космологии ранней Вселенной). Другая причина скорее теоретическая. Квантовые поля — мощный, но своенравный инструмент. Использовать их математически самосогласованно чертовски сложно. Если теряешь бдительность, сталкиваешься с не имеющими решений системами уравнений. Это придает «Ядру», основой которого являются квантовые поля, своего рода жесткость: его трудно изменить, не разрушив полностью.
К «Ядру» можно что-то добавить , но такое добавление должно либо включать новые формы материи, слабо связанные с известными нам, либо менять поведение элементарных частиц, но только при «нереализуемых» — то есть очень высоких — энергиях. Аксионы, о которых речь пойдет дальше, — один из примеров первой возможности. Теория суперструн, постулирующая, что наши элементарные частицы — на самом деле струны, относится ко второй [78]. Подобные новшества могут помочь выявить космологические и эстетические недочеты наших фундаментальных уравнений, но вряд ли как-то повлияют на их практическое применение.
Читать дальшеИнтервал:
Закладка: