Кит Йейтс - Математика жизни и смерти. 7 математических принципов, формирующих нашу жизнь
- Название:Математика жизни и смерти. 7 математических принципов, формирующих нашу жизнь
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:2019
- ISBN:978-5-04-161431-7
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Кит Йейтс - Математика жизни и смерти. 7 математических принципов, формирующих нашу жизнь краткое содержание
Математические истории Кита Йейтса наглядно демонстрируют, как математика наполняет нашу жизнь и управляет ею.
Каждая из глав посвящена одному математическому принципу, например теории вероятности, и демонстрирует, как эта концепция реализуется в повседневной жизни.
Вы узнаете о несправедливых судебных решениях, основанных на математических ошибках; о тянущихся последствиях катастрофы в Чернобыле; о том, как манипулируют статистикой и предотвращают эпидемии. И все это благодаря королеве наук.
Доступность подачи материала, отсутствие сложных математических формул, наглядная демонстрация важности математики в нашей жизни – вот главные принципы книги.
Математика жизни и смерти. 7 математических принципов, формирующих нашу жизнь - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
В 2000 году на всей территории США было официально объявлено об искоренении кори [162]. На медицинско-чиновничьем жаргоне это означало, что заболевание больше не циркулирует в стране на постоянной основе, и что любые новые случаи заболевания являются результатом вспышек, спровоцированных теми, кто возвращается в страну из-за рубежа. За девять лет с 2000 по 2008 год в США было зарегистрировано всего 557 подтвержденных случаев заболевания корью. Но только в 2014 году таких случаев было 667. По мере приближения 2015 года вспышка, очагом которой стал Диснейленд, а жертвами – семья Мёбиуса и десятки других семей, быстро распространилась по всей стране. К тому времени, как она сошла на нет, корью заразилось более 170 человек в 21 штате. «Корь из Диснейленда» была лишь частью общей тенденции – масштабные вспышки заболевания возникают все чаще. В США и Европе корь снова наступает, угрожая уязвимым группам населения.
Инфекционные болезни сопровождают людской род с тех пор, как наша родословная гомининов впервые отделилась от линии шимпанзе и бонобо. Незримым подтекстом большей части истории человечества идет история заразных болезней. Так, недавно было обнаружено, что более 5000 лет назад значительную часть населения Древнего Египта поразили малярия и туберкулез. Считается, что глобальная пандемия Юстиниановой чумы в период с 541 по 542-й выкосила от 15 до 25 % населения мира, насчитывавшего тогда 200 миллионов человек. После вторжения Кортеса в Мексику местное население за полвека сократилось с примерно 30 миллионов в 1519 году до каких-то 3 миллионов; у ацтекских врачей не было сил сопротивляться невиданным прежде болезням, занесенным конкистадорами с Запада. Список этот можно продолжать.
Даже сегодня, при достаточно развитом здравоохранении, современная медицина все еще не способна исключить болезнетворные патогенные микроорганизмы из нашей повседневности целиком – слишком уж они сложны. Большинство людей почти ежегодно сталкиваются с банальной простудой. Если вы сами не болели гриппом, вы наверняка знаете хотя бы нескольких переболевших. Холера или туберкулез в развитом мире встречаются реже, но эти потенциально пандемические заболевания не редкость во многих странах Африки и Азии. Однако даже в тех обществах, где инфекционные заболевания распространены широко, ими вполне можно и не заразиться. Наш болезненный интерес к болезням частично объясняется характером их проявления, который кажется случайным: одним эти болезни сулят невыразимые ужасы, а других – в том же самом обществе – не затрагивают вовсе.
Существует малоизвестная, но весьма успешная область науки, без лишней помпы работающая над разгадкой тайн инфекционных заболеваний. Предлагая профилактические меры, направленные на то, чтобы остановить распространение ВИЧ и разрешить кризис, вызванный лихорадкой Эбола, математическая эпидемиология играет решающую роль в борьбе с крупномасштабными инфекциями. Начиная с выявления рисков, которым может подвергнуть человечество набирающее мощь движение против вакцинации, и заканчивая борьбой с глобальными пандемиями, математика находится в центре жизненно важных мероприятий, призванных избавить Землю от болезней навсегда.
Оспа
К середине XVIII века оспа была распространена повсеместно. Считается, что только в Европе от этой болезни умирало 400 тысяч человек в год, что составляло до 20 % всех смертей на континенте. Половина выживших оставались слепыми и обезображенными. Работая врачом в сельской местности Глостершира, Эдвард Дженнер неоднократно сталкивался с укоренившимся местным поверьем: доярки как-то защищаются от оспы. Дженнер пришел к выводу, что легкая коровья оспа, которой заражалось большинство доярок, обеспечивает некоторый иммунитет от оспы натуральной – человеческой.
Для подтверждения своей гипотезы в 1796 году Дженнер провел новаторский эксперимент по профилактике заболеваний, который сегодня считался бы дико неэтичным [163]. Он втер гной из язвочки на руке доярки, зараженной коровьей оспой, в порез на руке восьмилетнего мальчика Джеймса Фиппса. У мальчика быстро появились высыпания и развилась лихорадка, но через десять дней он встал на ноги, здоровый, как и до прививки. Как будто одного раза было недостаточно, два месяца спустя Фиппс снова попал в руки Дженнера – на сей раз врач привил мальчику более опасный штамм человеческой оспы. Прошло несколько дней, но Фиппс не демонстрировал никаких симптомов заболевания, и Дженнер пришел к выводу, что у того выработался иммунитет. Дженнер назвал свой защитный процесс вакцинацией, от латинского слова vaccas – корова. В 1801 году он зафиксировал надежды первооткрывателя, записав, что «конечным результатом этой практики должно стать уничтожение оспы, самого страшного бича рода человеческого». В конце концов, почти 200 лет спустя, в 1977 году, благодаря напряженной работе по вакцинации, предпринятой Всемирной организацией здравоохранения, мечта Дженнера стала реальностью.
История изобретения вакцинации иллюстрирует неразрывную связь между оспой и историей современной профилактики инфекционных заболеваний. Корни математической эпидемиологии также лежат в попытке побороть оспу, но происхождением своим эта наука обязана далеко не только Дженнеру.
Задолго до того, как Дженнеру в голову пришла идея вакцинации, в отчаянной попытке спастись от неумолимой оспы народы Индии и Китая практиковали вариоляцию. В отличие от вакцинации, вариоляция подразумевает контакт с небольшим объемом материала, связанного непосредственно с самой болезнью. Для предотвращения оспы люди вдыхали через нос перетертые в пыль струпья переболевших или вводили их гной в порез на руке. Целью было спровоцировать у себя более мягкую форму оспы, которая, хотя и неприятна, но гораздо менее опасна и обеспечит пациенту пожизненный иммунитет от тяжелых симптомов резко выраженной болезни. Эта практика быстро распространилась на Ближний Восток, а затем, в начале 1700-х годов, и в Европу, где оспа свирепствовала повсеместно.
Несмотря на очевидную эффективность, вариоляцию критиковали. В некоторых случаях эта практика не защищала пациентов от повторного, более серьезного приступа оспы по мере ослабления иммунитета. Возможно, еще большее неприятие вызывала смертность в результате вариоляции – 2 % из тех, кто подвергся процедуре, умирали. Смерть Октавия [164], четырехлетнего сына английского короля Георга III, была одним из таких резонансных случаев, который способствовал дальнейшему разочарованию общества в этой практике. Несмотря на то, что смертность 2 % была значительно ниже, чем 20–30 %, связанная с естественным распространением заболевания, критики утверждали, что многие пациенты, подвергшиеся вариоляции, возможно, никогда не заразились бы оспой обычным путем, поэтому широкая профилактика является ненужным риском. Отмечалось и то, что подвергшиеся вариоляции больные могли распространять заболевание так же эффективно, как и те, кто инфицировался естественным образом. Однако в отсутствие контролируемых медицинских испытаний количественная оценка эффекта вариоляции и ее научная реабилитация были практически недостижимы.
Читать дальшеИнтервал:
Закладка: