Константин Ефанов - Решение проблемы турбулентности, отсутствие аналитического решения уравнений Навье-Стокса / The solution to the pboblem of turbulence, lack of analytical solution of navier-stokes equations

Тут можно читать онлайн Константин Ефанов - Решение проблемы турбулентности, отсутствие аналитического решения уравнений Навье-Стокса / The solution to the pboblem of turbulence, lack of analytical solution of navier-stokes equations - бесплатно ознакомительный отрывок. Жанр: Прочая научная литература, год 2022. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Решение проблемы турбулентности, отсутствие аналитического решения уравнений Навье-Стокса / The solution to the pboblem of turbulence, lack of analytical solution of navier-stokes equations
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    2022
  • ISBN:
    нет данных
  • Рейтинг:
    4/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Константин Ефанов - Решение проблемы турбулентности, отсутствие аналитического решения уравнений Навье-Стокса / The solution to the pboblem of turbulence, lack of analytical solution of navier-stokes equations краткое содержание

Решение проблемы турбулентности, отсутствие аналитического решения уравнений Навье-Стокса / The solution to the pboblem of turbulence, lack of analytical solution of navier-stokes equations - описание и краткое содержание, автор Константин Ефанов, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Решена проблема турбулентности – показано некорректности применения модельных представлений Навье, приведена модель Колмогорова, сравнение выполнено по теореме Геделя. Получен результат, что уравнения Навье-Стокса не охватывают турбулентность.Решена по-видимому проблема тысячелетия, сформулированная институтом Клея – решение уравнений Навье-Стокса на пространстве R3. То. что не описывает модель Анри Навье, уравнения Навь-Стокса решить не смогут.

Решение проблемы турбулентности, отсутствие аналитического решения уравнений Навье-Стокса / The solution to the pboblem of turbulence, lack of analytical solution of navier-stokes equations - читать онлайн бесплатно ознакомительный отрывок

Решение проблемы турбулентности, отсутствие аналитического решения уравнений Навье-Стокса / The solution to the pboblem of turbulence, lack of analytical solution of navier-stokes equations - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Константин Ефанов
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Константин Ефанов

Решение проблемы турбулентности, отсутствие аналитического решения уравнений Навье-Стокса / The solution to the pboblem of turbulence, lack of analytical solution of navier-stokes equations

Введение

В настоящей работе доказана невозможность существования и гладкости решения уравнений трехмерной задачи Навье-Стокса в пределах поля R3.

Институтом Клея этой задаче присвоение наименование задачи тысячелетия в числе некоторых других.

Доказательство выполнено на основании применения теоремы Курата Гёделя о неполноте, использован системный подход.

Рассмотрено физическое обоснование вывода уравнений Навье-Стокса, физические процессы течения турбуленоного потока. Для сопоставления и применения теоремы Гёделя двум указанным физическим процессам назначен уровень системы.

Показано, что уравнения Навье-Стокса не предназначены для решения проблем системы, соответсвующей уровню пространства R3.

Проблема решения уравнений Навье-Стокса

Уравнения Навье-Стокса, как показано в работе [1,с.73] Л.Н. Ландау, получаются записью баланса поступающей и выходящей жидкости с учетом диссипации энергии при вязком трении в жидкости. Вместе с тем, Л.Д. Ландау было отмечено, что впервые формулировка уравнений для несжимаемой жидкости была записана на основе модельных представлений Анри Навье (о молекулярных взаимодействиях).

Запишем уравнение Навье-Стокса для сжимаемой жидкости:

Для сжимаемой жидкости в уравнении Обозначения в уравнении и его вывод см - фото 1

Для сжимаемой жидкости в уравнении

Обозначения в уравнении и его вывод – см. работу Л.Н. Ландау [1].

А.Н. Колмогоров в работе [2,с.294] показал физическую модель турбулентности (в соответствии с Тейлором и Ричардсоном), состоящую В накладывании различных по масштабу турбулентных пульсаций на осредененный поток. Наибольшим масштабом является мастшаб L «пути перемешивания», наименьшим масштабом является масштаю λ, на котором вязкость оказывает влияение. Пульсации от курупных масштабов передают энергию пульсациям меньших масштабов. В результате этого возникает поток энергии, диссипация которой происходит за счет сил вязкого торения на масштабе λ. Колмогоров предложил следующие уравнения турбулентного движения исходя из локальных свойств турбулентности [2,с.295]:

В уравнениях обозначения согласно цитируемой работе АН Колмогорова ЛД - фото 2

В уравнениях – обозначения согласно цитируемой работе А.Н. Колмогорова.

Л.Д. Ландау отметил [2,с.296], что эти уравнения верны для локальной струкруты турбулентности, однако в турбулентном потоке наличие ротора скорости ограничивается конечной обдастью пространства и уравнения должны показывать именно такое распределение турбулентных вихрей.

Анри Навье в работе [3] при формулировке уравнений движения жидкости исходил из записи для одной точки пространства сплошной среды.

Ландау называет представления Анри Навье модельными [2,с.73] (в сноске).

Покажем модель физической картины течения, на которой основаны уравнения Навье:

То что описывается этой моделью для этого может быть найдено решение - фото 3

То, что описывается этой моделью, для этого может быть найдено решение уравнений Навье-Стокса. Этой моделью прекрасно можно описать частные случаи.

Сравним модель движения из работы А.Навье с моделью турбулентности, предложенной А.Н. Колмогоровым.

Модель Колмогорова:

Некоторые авторы указывают что уравнения НавьеСтокса содержит турбулентность - фото 4

Некоторые авторы указывают, что уравнения Навье-Стокса содержит турбулентность. Как видно, это не так. Уравнения Навье-Стокса могут быть применены на самом низком уровне модели Колмогорова. В целом, модель Анри Навье физически некорректна по сравнению с верной моделью Колмогорова. О её верности отметил Ландау [1,с.296] (на рассмотрении присутствовал Капица).

Главная проблема – уравнения Навье не предназначены для турбулентности и решения на пространстве R3, где турбулентность по-умолчанию есть (хотя и не оговаривается).

Метод DNS работает почти как модель Колмогорова, только энергия считается не сверху вниз, а снизу вверх (от ячеек до интегрального масштаба). Отсюда видно, почему численно легко уравнения Навье-Стокса решаются по DNS.

Объем, для которого составляются уравнения Навье-Стокса выбран с минимальными размерами, обеспечивающими сплошность среды. Однако это не принципиально. Очевидно, что куб несопоставимо меньше пространства R3.

Для куба описание физического процесса состоит в описании поступления в него и выхода из него жидкости, а также влияния вязкости.

Для пространства R3 со сложной структурой турбулентного течения физический процесс намного более сложен и для его описания недостаточно тех описаний, которые применены для куба при выводе уравнений Навье-Стокса!

В существующих попытках решения уравнений Навье-Стокса пространство R3 условно разбивают (дискретизируют) сеткой с кубичиескими элементами.

Попытки аналитического решения, например, в работе [4], сводятся к назначению граничных условий для уравнений и поиску решений.

Граничные условия для куба со сторонами x, y, x и шагом Q записываютcя в виде:

Очевидно что движение жидкости в пространстве R3 и в любом пространстве - фото 5

Очевидно, что движение жидкости в пространстве R3 и в любом пространстве, моделью Навье и его представлениями не описывается. Область вокруг точки не превышает колмогоровского масштаба.

Уравнения Навье-Стокса сооставлены для физической модели мелкого колмогоровского масштаба и не соответсвуют физическим процессам турбулентного движения больших объемов жидкости.

В случае аналитически точного решений Уравнений Навье-Стокса для случая течения Пуазёйля, решение выполняется для физического процесса, описываемого процесс для куба.

Существут методы прямого численного решения уравнений Навье-Стокса [5], [6], [7].

В этих методах (конечно-разностных) выполняется дискретизация пространства сеткой. Производная заменяется на алгебраическое отношение.

Очевидно, что в численных методах для пространства R3 решаются уравнения Навье-Стокса, не описывающие физического процесса на пространстве R3. Однако, результаты решений для каждого сеточного куба переносятся для интегрального решения для всей сетки, т.е. для пространства R3.

Для модели турбулентности Колмогорова такой подход означал бы расчет рассеянной энергии на всех мелких масштабах и суммирование полученных значений для верхнего масштаба. Модель Колмогорова описывает реальную картину течения жидкости.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Константин Ефанов читать все книги автора по порядку

Константин Ефанов - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Решение проблемы турбулентности, отсутствие аналитического решения уравнений Навье-Стокса / The solution to the pboblem of turbulence, lack of analytical solution of navier-stokes equations отзывы


Отзывы читателей о книге Решение проблемы турбулентности, отсутствие аналитического решения уравнений Навье-Стокса / The solution to the pboblem of turbulence, lack of analytical solution of navier-stokes equations, автор: Константин Ефанов. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x