Александр Шадрин - Неизвестная Энергия. Природа, действие и продукты
- Название:Неизвестная Энергия. Природа, действие и продукты
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:9785449812445
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Александр Шадрин - Неизвестная Энергия. Природа, действие и продукты краткое содержание
Неизвестная Энергия. Природа, действие и продукты - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:

Фото 13 Схема внешней оболочки атома
У водорода на такой сфере размещён только один электрон. У гелия (фото 12) два электрона размещены на этой сфере таким образом, чтобы центральное поле электрического заряда ядра «видело» максимальную поверхность волноводов этих электронов не только ближайшей поверхности, но и последующих по мере возрастания радиуса. В данном случае это достигается диаметрально противоположным расположением. Когда ядро обладает более значительным зарядом электрического потенциала, то на оболочке большего диаметра появляется больше свободной поверхности для размещения большего количества электронов. Так, например, у алюминия на втором слое, во второй p-оболочке может на поверхности сферы разместится уже 6 электронов. Эти электроны равномерно перекрывают своими волноводами всю поверхность этой оболочки. Поэтому на поверхности оболочек большего диаметра их число резко возрастает. Такая структура атомов возможна лишь в достаточно свободном пространством, какое имеется на поверхности планет и звёзд, но такая структура реально невозможна в глубине нижней мантии Земли, где благодаря очень высокому давлению отсутствует достаточно свободное пространство для образования перехода нейтрона с объёмом соответствующим размеру 10 —13 см в объём атома водорода с размером радиуса 10 —8 см, но возможно образование мю-атомов водорода, энергия которых может лишь представляться не температурой вращательно-колебательных состояний, а только вращением.
Рассмотренная структура размещения электронов в соответствующих оболочках полностью исключает всякое орбитальноедвижение электронов в пространстве вокруг ядра. Орбитальноедвижение электронов, как и движение электрона из возбуждённого состояния атома в основное состояние атома должно приводить к излучению дебройлевских волн, что наблюдается на практике высвечиванием оптических фотонов, но не наблюдается для атомов, находящихся в основном состоянии.
Запись, отражающая распределение электронов в атоме химического элемента по энергетическим уровням (слоям) и подуровням (оболочкам), называется электронной конфигурацией этого атома. Так, например, выше рассмотренная конфигурация атома алюминия может быть представлена, как 1s2 2s2 2p6 3s2 3p.
В основном (невозбужденном) состоянии атома все электроны удовлетворяют принципу минимума потенциальной энергии. Это значит, что сначала заполняются слои, для которых:
– главное квантовое число «n» минимально,
– внутри одного слоя сначала заполняется s- оболочка, затем p- и лишь затем d и т. д.,
– заполнение происходит так, чтобы (n + l) было минимально,
– в пределах одной оболочки электроны располагаются таким образом, чтобы равномерно своими волноводами покрыть всю поверхность этой оболочки не соприкасаясь друг с другом,
– заполнение электронных атомных оболочек выполняется в соответствии с принципом Паули.
Атомные микропространства проявляют весьма характерные свойства. Например, атом водорода способен поглощать или излучать вполне определенные серии фотонов. Это так называемые характеристические серии Бальмера, Пашена, Лаймана и т. д. При поглощении фотонов из этой серии, электрон переходит из 1S состояния в другие, более высоковозбужденные состояния – 2Р или 3S и т. д. У атома гелия возможностей еще больше – у него два электрона 1S2. Если возбужден только один электрон – 1S2S или 1S3Р и т.д., а если оба – 2S2 или 2Р3S и т. д. Что это значит? Это значит, что при поглощении энергии магнитным монополем электрона, он переходит в потенциальном поле ядра на более далёкое расстояние от него, которые называются ридберговскимисостояниями атомов.
Главный вопрос. Почему при рекомбинации протона с электроном, последние не падают друг на друга, как противоположные заряды, а остаются в противостоянии друг другу на расстоянии 10 —8 см, с образованием устойчивых атомов?
Как было уже показано на примере нейтрона, в процессе его распада, из него уносится энергия 1,29 Мэв в форме частиц (электрона-0.511 Кэв и антинейтрино) и кинетической энергии, распределенной между ними. Эта унесенная энергия и является тем барьером противостояния, который электрон благодаря своему стабильному существованию в виде полусферы радиусом 2,4 х 10 —10 см размещён в атоме (фото 1) при нормальных условиях радиусом 10 —7—10 —8 см, и поэтому не может упасть на поверхность протона. По той причине, что размер волноводов электрона (фото 12) на три десятичных порядка превосходит внешний волновод любого атомного ядра, т.е. чем меньше масса микрочастицы, тем больше размер-диаметр его волноводов в полной аналогии со свойствами ЭМВ – чем выше энергия, тем короче длинаволны и выше частотавихрона. Магнитный монополь электрона может жить только на поверхности сферы-полусферы указанного радиуса. Можно образно сказать, что энергия в вихревых полях атома, представленная формой материи холодной плазмы, проявляется в виде слоя сферического пространства – барьер.
Поэтому дебройлевская полусфера-волновод связанного атомного электрона не может физически «упасть» в центр – она способна лишь окружить его. Эта же причина является основой образования всех атомов таблицы Менделеева. И именно этот факт доказывает путь рождения всех атомных ядер, как и путь протона. К великому сожалению на коллайдерах и на других технических установках пока не научились получать плазму вихронов с энергией, позволяющей получать нейтральные ядра с большим атомным весом, чем масса нейтрона. Это позволило бы проанализировать тип и вид распада, а также возможность синтеза искусственного атома. С другой стороны, известно, что размер мюона соизмерим с внешними оболочками ядер, и поэтому присоединением мюона к ядру (мезоатом) осуществляется его приближение к ядру в 207 раз ближе, чем для электрона.
Атом в целом электрически нейтрален. Механизм электронейтральности поясняется схемой, представленной на фото 14.

Фото 14. Схема внутренних электрических полей атома с образованием зоны холодной плазмы.
Ядро атома имеет положительный заряд электрического потенциала и соответственно излучает в 4π вокруг себя поток положительно заряженных зёрен-потенциалов. Оболочки из электронов, образованные на расстоянии-радиусах от 0,5 – 15 х 10 —8 см, постоянно обновляются магнитными монополями с рождением экранирующего облака-потока отрицательно заряженных зёрен-потенциалов. Внутри атома образуется динамическое равновесное микропространство-поле, заполненное двухзнаковымэлектрическим эфиром, уничтожаемым в зоне электрической холодной безмассовой плазмы. Противоположно заряженные потоки зерен-электропотенциалов аннигилируютс образованием силовых линий электрического поля и уничтожением пространства, что приводит к притяжению источников их породивших и фиксации параметров атомного пространства путём рождения и обновления холодной плазмы из безмассовых электрических зёрен-потенциалов с противоположными знаками. Нескомпенсированный электрический эфир, рождённый высокой, но разной частотой соответствующих магнитных монополей, может выводится из межатомного пространства при сильной поляризации вещества большими по значению электрическими потенциалами, существующими для связи в атоме, и способен к образованию энергии в форме освобождённого заряда электрическими зёрнами-потенциалами с последующим его захватом и преобразованием в электрический холодный токтехнологиями Н. Тесла, Э. Грея и И. Копеца.
Читать дальшеИнтервал:
Закладка: