Чэнь Цюфань - ИИ-2041. Десять образов нашего будущего

Тут можно читать онлайн Чэнь Цюфань - ИИ-2041. Десять образов нашего будущего - бесплатно ознакомительный отрывок. Жанр: Прочая научная литература, год 2022. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Чэнь Цюфань - ИИ-2041. Десять образов нашего будущего краткое содержание

ИИ-2041. Десять образов нашего будущего - описание и краткое содержание, автор Чэнь Цюфань, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Искусственный интеллект станет определяющим событием XXI века. В течение двух десятилетий все аспекты повседневной жизни станут неузнаваемыми. ИИ приведет к беспрецедентному богатству, симбиоз человека и машины приведет к революции в медицине и образовании и создаст совершенно новые формы общения и развлечений. Однако, освобождая нас от рутинной работы, ИИ также бросит вызов организационным принципам нашего экономического и социального порядка. ИИ принесет новые риски в виде автономного оружия и неоднозначных интеллектуальных технологий. ИИ находится в переломном моменте, и людям необходимо узнать как его положительные черты ИИ, так и экзистенциальные опасности, которые он может принести.
В этой провокационной, совершенно оригинальной работе Кай-Фу Ли, бывший президент Google China и автор книги «Сверхдержавы искусственного интеллекта», объединяется со знаменитым романистом Чэнь Цюфанем, чтобы представить наш мир в 2041 году и то, как он будет формироваться с помощью ИИ. В десяти захватывающих рассказах они познакомят читателей с возможными новыми реалиями 2041 года:
• В Сан-Франциско появляется индустрия «перераспределения рабочих мест», поскольку ИИ с глубоким обучением вызывает массовое перемещение рабочих мест;
• В Токио меломан погружается в захватывающую форму поклонения знаменитостям, основанную на виртуальной и смешанной реальности;
• В Мумбаи девочка-подросток бунтует, когда сжатие больших данных ИИ мешает романтике;
• В Сеуле виртуальные компаньоны с совершенными навыками обработки естественного языка (НЛП) предлагают близнецам-сиротам новые способы общения;
• В Мюнхене ученый-мошенник использует квантовые вычисления, компьютерное зрение и другие технологии искусственного интеллекта в заговоре мести, который ставит под угрозу весь мир
Глядя на не столь отдаленный горизонт, AI 2041 предлагает срочное понимание нашего коллективного будущего, напоминая читателям, что, в конечном счете, человечество остается автором своей судьбы.
Для кого эта книга Для новаторов, руководителей и предпринимателей, которые изучают тему искусственного интеллекта и его развития, чтобы быть первыми в своей сфере.
Для всех, кто интересуется будущим человечества.
На русском языке публикуется впервые.

ИИ-2041. Десять образов нашего будущего - читать онлайн бесплатно ознакомительный отрывок

ИИ-2041. Десять образов нашего будущего - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Чэнь Цюфань
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

В чем же тут подвох? В том, как и чем приходится за это расплачиваться. Вопрос лег в основу нашей первой истории, познакомившей читателя с основополагающей для ИИ концепцией глубокого обучения.

Глубокое обучение – прорыв в области искусственного интеллекта. Среди многих подобластей ИИ машинное обучение – это область, которая привела к наиболее успешным приложениям, а в машинном обучении самым большим достижением является направление под названием «глубокое обучение» – настолько, что термины «ИИ», «машинное обучение» и «глубокое обучение» иногда используются взаимозаменяемо (хотя это и неточно). В 2016 году глубокое обучение вызвало ажиотаж после впечатляющей победы AlphaGo над конкурентом-человеком в игре го, самой популярной интеллектуальной настольной игре в Азии. После этого нашумевшего поворота глубокое обучение стало важной частью большинства коммерческих приложений ИИ, и оно фигурирует в большинстве историй в AI 2041.

В «Золотом слоне» описан потрясающий потенциал глубокого обучения и его ловушки вроде воспроизведения социальных предрассудков в цифровых технологиях.

Так что же такое глубокое обучение? Каковы его ограничения? Какую роль в нем играют данные? Почему интернет и финансы считаются наиболее перспективными отраслями для применения ИИ на ранних этапах? Какие условия оптимальны для глубокого обучения? И почему кажется, что это работает чертовски хорошо – но только когда оно действительно работает? Каковы недостатки и недочеты ИИ?

ЧТО ТАКОЕ ГЛУБОКОЕ ОБУЧЕНИЕ?

Глубокое обучение вдохновлено сложнейшей сетью нейронов нашего мозга, оно строит программные многослойные искусственные нейронные сети с входными, скрытыми и выходными слоями. Данные поступают на входной слой – вход, а результат, соответственно, появляется на выходном слое. Между ними могут находиться тысячи других скрытых слоев – отсюда и «глубокое обучение».

Многие считают, что ИИ «программируется» или «обучается» людьми посредством указания конкретных правил и действий. Например, человек сообщает ИИ, что «у кошек заостренные уши и усы». Но на самом деле глубокое обучение работает лучше без внешних «человеческих» правил. Вместо того чтобы запоминать правила, данные людьми, на вход глубокой нейросети подается множество примеров, а на выход – правильные ответы для каждого из них. Таким образом, сеть между входом и выходом может быть «обучена», чтобы максимизировать шансы получить правильный ответ на заданный вход.

Есть множество примеров, когда человек не подсказывает, а передает информацию на входной слой и «правильный ответ» – на выходной слой.

Представим, что исследователи хотят, чтобы сеть глубокого обучения отличала фотографии кошек от любых других изображений. Для начала исследователь может подать на входной слой миллионы разных фото, маркированных «кошка» или «не кошка»; при этом на выходном слое метки «кошка» или «не кошка» уже должны быть заданы.

Сеть обучается определять, какие признаки в миллионах изображений наиболее информативны для отделения «кошек» от «не кошек». Это обучение представляет собой математический процесс, настраивающий в сети глубокого обучения миллионы (а иногда и миллиарды) параметров, для того чтобы максимизировать вероятность того, что для изображения кошки на входе будет выдана метка «кошки», а для другого изображения – метка «не кошка». На рисунке ниже вы видите такую нейронную сеть глубокого обучения для «распознавания кошек».

Нейронная сеть глубокого обучения обученная отличать фото кошек от фотографий - фото 2

Нейронная сеть глубокого обучения, обученная отличать фото кошек от фотографий, на которых изображено что-то другое

В ходе этого процесса глубокая нейросеть математически обучается (или «тренируется») максимизировать значение «целевой функции». В нашем примере с распознаванием кошки такой целевой функцией является вероятность правильного распознавания «кошка» – «не кошка».

После такой тренировки сеть глубокого обучения, по сути, становится гигантским математическим уравнением; его можно протестировать на изображениях, которых она до этого не видела, и убедиться, что сеть путем «умозаключений» способна определить наличие или отсутствие в этих изображениях кошки.

С появлением глубокого обучения совершенно непрактичные ранее возможности ИИ стали пригодными для применения во многих областях и сферах. На следующей диаграмме наглядно показано, как резко сократилось число ошибок распознавания образов, когда начали использовать технологии глубокого обучения.

Глубокое обучение – это технология универсального применения, ее можно использовать практически в любой области для распознавания образов, прогнозирования, классификации данных, принятия решений или синтеза. Возьмем сферу страхования, о которой идет речь в рассказе «Золотой слон».

ИИ в приложениях Ganesh Insurance предобучили оценивать вероятность развития у клиента компании серьезных проблем со здоровьем и соответствующим образом корректировать его страховой взнос.

Чтобы сеть научилась отделять тех, у кого с большой вероятностью возникнут такие проблемы, от тех, у кого они, скорее всего, не возникнут, ИИ «тренируют» на обучающих данных, включающих в себя информацию обо всех прошлых заявителях на получение страховки, обо всех их обращениях в медицинские учреждения с разными жалобами и об их семьях. Каждый случай маркируют на выходном слое меткой «обращался с серьезными медицинскими проблемами» или «не обращался с серьезными медицинскими проблемами».

Использование глубокого обучения привело к существенному снижению частоты - фото 3

Использование глубокого обучения привело к существенному снижению частоты ошибок при распознавании объектов компьютерным зрением

Впитав в себя в процессе предобучения весь этот набор данных, ИИ может делать предсказания вероятности возникновения у заявителя серьезных проблем со здоровьем и решать, одобрять заявку на страхование или нет, и если да, то каким при этом должен быть страховой взнос.

Обратите внимание: в данном сценарии ни одному человеку не придется маркировать претендента на оформление страховки как объект, имеющий риски с точки зрения здоровья или же не имеющий таковых. Эти метки основываются исключительно на «достоверной информации» (например, были ли у претендента на оформление страховки серьезные жалобы на здоровье в прошлом).

ГЛУБОКОЕ ОБУЧЕНИЕ: ПОТРЯСАЮЩИЕ ВОЗМОЖНОСТИ. НО – С ОГРАНИЧЕНИЯМИ

Первая научная статья о глубоком обучении вышла еще в 1967 году. Потребовалось более полувека, чтобы эта технология проявила себя. Это заняло так много времени, потому что для обучения искусственной нейронной сети требуется огромное количество данных и вычислительных мощностей. И если вычислительные мощности – двигатель ИИ, то данные – его топливо.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Чэнь Цюфань читать все книги автора по порядку

Чэнь Цюфань - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




ИИ-2041. Десять образов нашего будущего отзывы


Отзывы читателей о книге ИИ-2041. Десять образов нашего будущего, автор: Чэнь Цюфань. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x