Лев Файко - Дерзкие мысли о климате

Тут можно читать онлайн Лев Файко - Дерзкие мысли о климате - бесплатно ознакомительный отрывок. Жанр: Прочая научная литература, год 2022. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Лев Файко - Дерзкие мысли о климате краткое содержание

Дерзкие мысли о климате - описание и краткое содержание, автор Лев Файко, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Книга общедоступно характеризует состояние основных современных представлений о механизмах климатоформирования, акцентирует внимание на ошибках и заблуждениях, осложнивших раскрытие некоторых тайн климата. Автор обосновывает собственный новый взгляд на разительные контрасты теплообеспеченности разных широт и регионов Земли, излагает существо своей концепции о неравновесности теплообмена замерзающих водоёмов с внешней средой, а через это находит возможным предложить неординарные толкования ряду явлений, определяющих климат, и высказывает собственное отношение к субъективизму некоторых законов естествознания. Рассматриваются социальные аспекты взаимодействия природы и человека, в том числе проблемы мелиорации климата.

Дерзкие мысли о климате - читать онлайн бесплатно ознакомительный отрывок

Дерзкие мысли о климате - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Лев Файко
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Здесь уже в расходе значится: эффективное излучение (175 кДж/см 2год): турбулентный обмен с атмосферой (132 кДж/см 2год) и тепло, затраченное на испарение воды (198 кДж/см 2год). Только тут выясняется, что первая величина вовсе не поглощалась водой поскольку эта доля тепла, как от зеркала, просто отразилась от поверхности водоёма. Но ведь между смыслами слов «поглотилась» и «отразилась» существует большая разница.

Из второй статьи расходов после некоторого мысленного усилия следует, что в ней отражено количество тепла, пошедшее на нагревание воды в озере, что точнее можно измерить термометром. Но далее оказывается, что только это количество тепла и шло на нагревание воды, то есть собственно поглощалось озером. Оно составляет лишь 24 % всей достигшей озеро энергии солнечной радиации. А как же с испарением? Испарение происходит на бесконечно тонкой поверхностной пленке воды и этот изотермический процесс тоже не влияет на изменение температуры воды, а значит, и тепло затраченное на испарение тоже может относится к поглощенному массой водоема. Как следует из оценок актинометристов до 86 % всей поступившей к поверхности водоёма радиационной энергии расходуется на испарение в верхнем слое воды толщиной в 1 мм, то есть практически отражается, а не поглощается. Скрытая энергия испарения поднимается в высоты атмосферы, где и высвобождается снова путем конденсации пара в воду или при сублимации [2] В метеорологии смысл термина «сублимация» расходится с принятым в физике, где им обозначается обратный процесс – испарение (возгонка) льда (Гляциологический словарь, 1984). его в ледяные кристаллы. Но для водоёма парообразование не проходит бесследно, поскольку он теряет массу, как «хранительницу» тепловой энергии. Потери массы, это потери энтальпии, то есть изотермическая потеря теплоты, не доступная фиксированию термометром, но энергетически выраженная ещё больше, чем изменением температуры, так как удельная теплота парообразования весьма велика и составляет 2,25 кДж/г. Величина третьей расходной статьи баланса свидетельствует о том, что на оз. Севан ежегодно испаряется слой воды в 88 см. И именно на убыль уровня озера расходуется вся энергия, пошедшая на парообразование.

Но если мы пришли к заключению, что убыль воды в озере свидетельствует о потере им энтальпии (грубо – теплосодержания или просто тепла), то должны согласиться и с тем, что обратная прибыль воды в свою очередь должна сопровождаться соответствующим увеличением энтальпии озера. А отсюда следует, что принятый метод расчета теплового баланса, даже после устранения тех несуразностей, которые отмечены выше, может быть верен в случае, если одновременно балансируется массообмен водоёма с окружающей средой и не может быть истинным, если баланс водообмена не рассматривается.

Заметим, что автор далеко не первый замечает несовершенства принятого метода теплобалансовых расчетов. Например, В. Н. Степанов (1963, с.120) писал: «… радиационный баланс неуравновешивает ни в каждом данном месте, ни в океане в целом теплообмен, осуществляющийся за счет остальных компонентов», поскольку тепло может переносится как по вертикали, так и по горизонтали. И он настойчиво предлагал «заменить термин «баланс» (равенство, равновесие) термином «бюджет», под которым понимается разность между приходом и расходом тепла». Однако, если любой участок суши или моря термически стабильно существует очень большой ряд лет, то очевидно, что на нем имеет место примерное балансирование прихода и расхода тепла. Следовательно, и количественное соотношение конечных величин прихода и расхода тепла в этом случае обязательно, независимо от результатов их субъективных расчетов, существует. Задача исследователя в этом случае сводится лишь к тому, чтобы наблюдениями и расчетами подтвердить этот факт. А это можно сделать, учитывая лишь все факторы теплообмена, в том числе возможный приход тепла помимо радиации, обмен теплотой при обмене масс и прочие иногда не замечавшиеся особенности тепло- и массообмена внешних сред и сфер Земли.

Притягательность метода теплового баланса исходит от непреложности закона сохранения и превращения энергии. Мы автоматически принимаем, что если где-то тепло потрачено, то откуда-то оно должно возвратиться в том же количестве, а значит, можно его подсчитать, составляя тепловой баланс. Однако оказывается, что вывести сходящийся (замыкающийся) тепловой баланс для некоторых объектов природы не всегда возможно. Примером может служить обыкновенный ледяной покров на водоёмах. В этом случае нельзя составить годовой тепловой баланс собственно для льда, поскольку расходом теплоты кристаллизации он создается, а равным приходом теплоты плавления ликвидируется.

Но можно составить баланс теплообмена при намерзании и таянии льда. Если обозначим теплоту кристаллизации Q–, а теплоту плавления Q+, то можно, ничего не считая для одного и того же намерзающего и тающего слоя льда сразу записать баланс: Q- = Q+

Просто? Но за этой простотой, как оказалось, скрывались очень важные особенности теплообмена замерзающих водоёмов с внешней средой, дающие пищу для нового взгляда на проблему климата. Дальше об этом расскажем подробнее. Вернемся ещё и к тепловым балансам.

Часть II. Раскрываем ещё одну тайну льда

Каждый учёный, не сделавший открытия, есть самоубийца.

М. Пришвин

Глава 4. Плавучий лёд аккумулирует теплоту для водоёма

Ледяной покров водоёма настолько всем хорошо знаком, что, казались бы, не стоило тратить времени на поиски каких-то еще неизвестных его свойств. Но как часто ошибочность первого взгляда уводила исследователя от познания очень важного нового! Так случилось и со льдом. Пытаясь «на всякий случай» проверить, каким внешним теплообменом поддерживается баланс теплоты кристаллизации и теплоты плавления при намерзании и таянии плавучего льда, автор столкнулся с поразительной несуразицей, в которую невозможно было сразу поверить. Потребовалось ещё более 15 лет, чтобы эта назойливо маячившая в сознании загадка привела к обнаружению ясно обозначившегося ранее неизвестного природного явления. Оно до сих пор обсуждается на предмет научного признания. Но само явление очевидно и обросло неопровержимыми доказательствами его правомерности. Автор теперь может изложить его понятно и тем самым дать возможность читателю самому убедиться в его сути и важности, чему и посвящено далее следующее.

4.1. Невероятный, но очевидный разбаланс

Итак, теплота кристаллизации Q– и теплота плавления Q+ для одного и того же слоя намерзающего и тающего льда равны, то есть Q- = Q+

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Лев Файко читать все книги автора по порядку

Лев Файко - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Дерзкие мысли о климате отзывы


Отзывы читателей о книге Дерзкие мысли о климате, автор: Лев Файко. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x