Пол Стейнхардт - Невозможность второго рода. Невероятные поиски новой формы вещества
- Название:Невозможность второго рода. Невероятные поиски новой формы вещества
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:2022
- Город:Москва
- ISBN:978-5-17-122038-9
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Пол Стейнхардт - Невозможность второго рода. Невероятные поиски новой формы вещества краткое содержание
В формате PDF A4 сохранен издательский макет.
Невозможность второго рода. Невероятные поиски новой формы вещества - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:

Наш обобщенный мультисеточный метод самым прямым и явным образом продемонстрировал то, что мы с Довом ранее уже доказали более абстрактным и косвенным математическим способом: квазикристаллические узоры можно построить для бесконечного числа различных симметрий, которые запрещены для кристаллических решеток. Теперь каждый мог легко убедиться, что число возможных форм вещества из строго ограниченного стало бесконечным. Это был серьезный сдвиг парадигмы.
Другой важной идеей, разработанной несколькими независимыми группами теоретиков, был “метод проекций”. Согласно этому подходу, замощение Пенроуза и другие квазипериодические узоры получаются как проекции, или “тени”, периодически упакованных в высоких размерностях “гиперкубов”, то есть аналогов трехмерных кубов в воображаемых геометриях пространств четырех или более измерений. Большинство людей не могут без специальной тренировки визуально представить себе, как работает этот метод, однако математики и физики находят эту концепцию очень полезной для анализа атомной структуры квазикристаллов и для расчета их дифракционных свойств.
Обобщенный мультисеточный и проекционный методы – это мощные математические инструменты для генерации узоров из ромбических плиток в двух измерениях и из ромбоэдров в трех измерениях. Но у них есть серьезное ограничение: они не дают никакой информации о правилах совмещения. Например, узоры с симметрией 11-го (см. рисунок справа вверху) и 17-го порядка (внизу) оба сгенерированы мультисеточным методом.
Эти чудесные замысловатые узоры составлены из простых ромбов: широких, средних и узких. Но у них нет ни насечек, ни замков, которые не давали бы плиткам организоваться в кристаллический узор.
Так что, если бы вам выдали стопку таких плиток и попросили замостить ими пол без использования в качестве руководства полного изображения узора, у вас мог бы получиться обычный регулярный кристаллический узор, поскольку его проще выложить. У вас также мог бы получиться случайный узор. А вот шанс выложить квазикристаллический рисунок был бы очень мал. Для этого вам понадобилось бы руководствоваться правилами совмещения, помогающими заметить допускаемые при сборке ошибки.


Представьте, что каждый тип плиток в узорах выше заменяется группой атомов. Несмотря на то что строго упорядоченный квазикристаллический порядок возможен, интуитивно очевидно, что при затвердевании жидкости атомы с гораздо большей вероятностью будут организовываться в кристаллический или случайный порядок, если только между атомами не будет взаимодействия, которое проявляется подобно правилам совмещения и препятствует такой организации. Таких конфигураций гораздо больше, чем квазикристаллических, и для их образования требуется гораздо менее тонкая координация.
Именно поэтому мы с Довом тратили поначалу столько сил на демонстрацию того, что для наших широких и узких ромбоэдров можно придумать замки, которые действовали бы как правила совмещения, препятствующие образованию как кристаллического, так и случайного порядка и вынуждающие к формированию квазикристаллической структуры.
Но достаточно ли одних правил совмещения, чтобы объяснить, как образуются квазикристаллы? Ответа на этот вопрос у меня не было. Может быть, нужны какие-то еще свойства, чтобы атомы естественным образом организовались в идеальную квазикристаллическую структуру?
Джош Соколар вызвался поработать со мной над этим сложным вопросом. Он уже проявил свои таланты в нашей предыдущей работе по обобщению мультисеточного подхода на произвольные симметрии, и я был очень рад, что он захотел принять участие в более крупном проекте. Высокий долговязый Джош своим присутствием всегда вызывал ощущение спокойствия и задумчивости, что было довольно неожиданно для такого молодого человека. Я всегда чувствовал, что нахожусь в одном шаге от перевозбуждения и что Джош привносит в наши дискуссии ощущение покоя. Он также обладал исключительной геометрической интуицией, сослужившей нам бесценную службу тогда и вообще на протяжении всего нашего весьма плодотворного и продолжающегося по сей день сотрудничества.
Для поиска новых идей мы с Джошем решили вернуться к пенроузовским замощениям. Мы заметили, что правила совмещения Пенроуза для двумерных узоров включают два других свойства, которыми не обладали широкие и узкие ромбоэдры, изучавшиеся нами с Довом. Первым отсутствующим элементом были линии Амманна – широкие и узкие каналы, которые появлялись, когда ромбы с нанесенными на них полосами складывались в мозаику Пенроуза. Мы с Джошем решили ввести в нашу геометрическую конструкцию трехмерный аналог линий Амманна и назвали его “плоскостями Амманна”. Вторым недостающим элементом были правила дефляции-инфляции – процедуры для разделения двух ромбов в замощении Пенроуза на более мелкие части.
Мы с Джошем предполагали, что альтернативный набор строительных блоков, обладающий всеми тремя свойствами – правилами совмещения (замками), амманновскими плоскостями и правилами дефляции-инфляции, – может раскрыть секрет того, каким образом реальные атомы в жидкости соединяются при образовании квазикристалла. Плоскости Амманна и правила дефляции-инфляции могли служить объяснением того, как атомы, начав с какого-то случайного образования, организуются в четком квазипериодическом порядке, а правила замков, которые разработали мы с Довом, могли помочь в объяснении того, каким образом атомы остаются зафиксированными в этой конфигурации.
Конец ознакомительного фрагмента.
Текст предоставлен ООО «ЛитРес».
Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.
Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.
Notes
1
Калтех – Калифорнийский технологический институт. – Здесь и далее, если не указано иное, прим. перев.
2
Интегральные молекулы ( фр. ).
Читать дальшеИнтервал:
Закладка: