Томас Гоббс - Основы философии (о теле, о человеке, о гражданине). Человеческая природа. О свободе и необходимости. Левиафан
- Название:Основы философии (о теле, о человеке, о гражданине). Человеческая природа. О свободе и необходимости. Левиафан
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:2022
- Город:Москва
- ISBN:978-5-17-149445-2
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Томас Гоббс - Основы философии (о теле, о человеке, о гражданине). Человеческая природа. О свободе и необходимости. Левиафан краткое содержание
Философ-материалист Т. Гоббс – уникальное научное явление. Только то, что он сформулировал понятие верховенства права, делает его ученым мирового масштаба. Он стал основоположником политической философии, автором теорий общественного договора и государственного суверенитета – идей, которые в наши дни чрезвычайно актуальны и нуждаются в новом прочтении.
В формате PDF A4 сохранен издательский макет книги.
Основы философии (о теле, о человеке, о гражданине). Человеческая природа. О свободе и необходимости. Левиафан - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Под стремительностью (impetus) я понимаю скорость движущегося тела, но рассматриваемую в любом промежутке времени, в течение которого происходит движение. В этом смысле стремительность есть не что иное, как величина и скорость самого импульса […] Сопротивлением называется тот импульс, который при столкновении двух движущихся тел частично или целиком противоположен импульсу другого тела […]
Из двух движущихся тел одно оказывает давление на другое тело, если первое силой своего импульса заставляет сдвинуться со своего места другое тело или его часть […]
Сила есть стремительность, или скорость, движения, умноженная на саму себя или на величину движущегося тела, благодаря чему это последнее более или менее сильно воздействует на тело, которое оказывает ему сопротивление […]
3. Некоторые тезисы о природе движения.
[…] Движущаяся точка, как бы мала ни была стремительность ее движения, приводит в движение точку, находящуюся в покое, при столкновении с последней […]
Если движущаяся точка ударяется о точку находящегося в покое тела, то последнее, как бы оно ни было твердо и как бы мала ни была стремительность движущейся точки, силой удара будет немного сдвинуто со своего места […]
Покой не производит абсолютно никакого действия, одно только движение заставляет двигаться покоящиеся тела и приводит в состояние покоя тела движущиеся […]
Тело, движущееся под воздействием другого тела, не теряет своего движения после прекращения движения последнего […]
Дальнейшие мысли о движении.
Направление, которое приобретает первый импульс движущихся тел.
Если движение возникает из столкновения двух движущихся тел, то импульс в случае прекращения движения одного из этих тел приобретает то же направление, что и путь другого.
Каждый импульс распространяется до бесконечности.
[…] Ибо он есть движение. Если движение (а следовательно, и первый импульс) происходит в пустом пространстве, то оно будет продолжаться впоследствии с той же скоростью, так как пустое пространство не может оказывать никакого сопротивления. Поэтому импульс в этом случае всегда будет распространяться в одном и том же направлении и с одной и той же скоростью. Если же пространство не пусто, то, так как импульс есть движение, всякая вещь, препятствующая импульсу, будет сдвинута со своего места, и так будет происходить до бесконечности. Поэтому и в заполненном пространстве распространение импульса продолжается до бесконечности, причем он переходит с одной части этого пространства на другую […] Сверх того, импульс переносится на какое угодно далекое расстояние мгновенно. При этом совершенно неважно то что по мере его распространения он все более и более слабеет, так что в конце концов не может больше быть предметом чувственного восприятия. Движением он все же остается, хотя бы и движением, незаметным для глаза. Но мы здесь рассматриваем вещи не такими, какими они представляются нам на основании наших чувственных восприятий и опыта, а такими, какими представляет их наш разум […]
8. Чем больше скорость (при равной величине) какого-нибудь движущегося тела, тем большее действие последнее оказывает на другое тело, с которым оно сталкивается в своем движении.
Глава XVI
О равномерном и ускоренном движении; о движении, возникающем в результате столкновения
1. Скорость всякого тела, в какой бы момент времени мы ее ни рассматривали, равна величине импульса, помноженной на время. 2–5. Пути любых движений относятся друг к другу, как произведения импульсов этих движений и времени, 6. Отношение путей, пройденных двумя равномерно движущимися телами, складывается из прямого отношения затраченных этими телами на движение промежутков времени и их импульсов. 7. Отношение промежутков времени, затраченных на движение двумя равномерно движущимися телами, складывается из отношений их взаимно сопоставленных путей и импульсов; подобным же образом и отношение их импульсов складывается из отношений их взаимно сопоставленных путей и затраченных ими на движение промежутков времени. 8. Если тело приводится в движение двумя движениями, направления которых образуют угол, то направление движения этого тела будет представлять собой прямую линию, образующую диагональ параллелограмма, составленного из обоих вышеуказанных движений. 9-IS, Какой путь описывает тело, приведенное в движение двумя движениями, из которых одно равномерно, а другое ускоренно, если отношение путей, описываемых последними, к промежуткам времени, в течение которых они совершаются, может быть выражено в числах.
Глава XVII
О несовершенных фигурах
1. Определение несовершенной фигуры.
[…] Я называю несовершенными такие фигуры, которые мы можем представить себе как результат равномерного движения непрерывно уменьшающегося количества […] Такой несовершенной фигурой является, в частности, плоскость, ограниченная двумя прямыми линиями и одной кривой, например параболой […]
Я называю фигуру совершенной по сравнению с какой-либо несовершенной фигурой, если она произведена в то же время, что и последняя, и тем же движением количества, сохраняющего все время одну и ту же величину. Дополнение несовершенной фигуры делает ее совершенной […]
Отношение несовершенной фигуры к ее дополнению.
Отношение несовершенных фигур к параллелограммам, в которые они вписаны.
Описание и построение, этих же фигур.
Проведение касательных к ним.
Отношение несовершенных фигур к прямолинейному треугольнику, имеющему ту же высоту и то же основание.
Таблица несовершенных объемных фигур, вписанных в цилиндр.
В каком отношении находятся эти фигуры к конусу, имеющему ту же величину и основание, что и они.
Способ вписать плоскую несовершенную фигуру в параллелограмм так, чтобы отношение – этой фигуры к треугольнику, имеющему ту же высоту и основание, было равно отношению другой удвоенной плоской или объемной несовершенной фигуры к данной несовершенной фигуре, взятой вместе с той совершенной фигурой, в которую она вписана.
10. Перенос известных свойств несовершенных фигур, вписанных в параллелограмм, на отношения пространств, пройденных движущимися с различной степенью скорости телами.
11. О несовершенных фигурах, вписанных в круг.
12. Подтверждение положений, содержащихся в пункте 2, на основании принципов первой философии.
[…] При этом имеется в виду положение, что равенство или неравенство действий, т. е. отношение между ними, обусловливается и определяется равенством и неравенством их причин […]
О равенстве между поверхностью части шара и кругом.
Как путем вписания несовершенных фигур в параллелограмм может быть найдено любое число равных пропорций между двумя данными линиями.
Читать дальшеИнтервал:
Закладка: