Виталий Козлов - Частотный синтез на основе ФАПЧ. Обзор методов синтеза

Тут можно читать онлайн Виталий Козлов - Частотный синтез на основе ФАПЧ. Обзор методов синтеза - бесплатно ознакомительный отрывок. Жанр: Прочая научная литература. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Виталий Козлов - Частотный синтез на основе ФАПЧ. Обзор методов синтеза краткое содержание

Частотный синтез на основе ФАПЧ. Обзор методов синтеза - описание и краткое содержание, автор Виталий Козлов, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Рассмотрены тенденции развития частотного синтеза на базе ФАПЧ за более чем 70-летний период, начиная с возникновения самой идеи такого синтеза, и включая настоящее время. Монография снабжена множеством поясняющих иллюстраций и обширным списком справочных источников. Книга может быть полезной разработчикам аппаратуры такого класса, а также студентам соответствующих специальностей.

Частотный синтез на основе ФАПЧ. Обзор методов синтеза - читать онлайн бесплатно ознакомительный отрывок

Частотный синтез на основе ФАПЧ. Обзор методов синтеза - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Виталий Козлов
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

При своей относительной простоте, схема имеет существенный недостаток. Выделить компоненту G с желаемой точностью можно лишь при значительном отношении частот Fr/Fc, чтобы в нужной степени подавить компоненту H, не внося существенных искажений в компоненту G. В противном случае уровень помех дробности в спектре сигнала может оказаться недопустимо высоким. Поэтому схема может быть использована в диапазоне довольно низких частот сигнала, когда пилообразная компонента G не искажается фильтром нижних частот в верхней части его частотного диапазона.

Нетрудно заметить, что эту схему можно использовать и как синтезатор прямого типа. Если после фильтра включить пороговый элемент, то на его выходе получим импульсы синтезируемой частоты Fc=RFr/Q с шагом сетки частот, равным dF=Fr/Q, где Q – ёмкость аккумулятора. При этом отмеченный выше недостаток остаётся в силе.

3.6. Схема Никифорова

Недостаток предыдущего варианта устраняется в схеме, предложенной Никифоровым В. И. [46; 47] и показанной на рисунке 20.

Рис20 Схема Никифорова Диаграммы поясняющие работу схемы приведены на - фото 23

Рис.20 Схема Никифорова

Диаграммы, поясняющие работу схемы, приведены на рисунке 21.

Рис21 Диаграммы поясняющие работу схемы на рисунке 20 Аккумулятор - фото 24

Рис.21. Диаграммы, поясняющие работу схемы на рисунке 20

Аккумулятор тактируется опорной частотой Fr. Чтобы избежать излишней сложности в описании работы схемы, здесь выбраны небольшие значения как его ёмкости Q=16 так и накапливаемого им числа R=3. Импульс переполнения аккумулятора поступает на формирователь импульсов, синхронизируемый частотой Fr. Цифровая последовательность с выхода аккумулятора подаётся на один из входов мультиплексора, а на другой вход последнего – код R.

Мультиплексор переключается импульсом с одного из выходов формирователя импульсов таким образом, что на выходе мультиплексора с каждым переполнением аккумулятора чередуются код R и остаток H в аккумуляторе как результат его переполнения. При этом время действия остатка удваивается относительно периода T 1=1/Fr. Далее цифровая последовательность с выхода мультиплексора преобразовывается ЦАП в аналоговый эквивалент и поступает на интегрирующее звено, которое может быть выполнено на основе операционного усилителя. Элемент разряда служит для сброса заряда в интегрирующем звене во время переполнения аккумулятора. Для этого используется управляющий импульс с другого выхода формирователя импульсов. Длительность этого импульса равна T 2=2/Fr. За это время интегрирующее звено должно быть полностью очищенным от заряда.

На диаграммах рисунка 21 показано: A) – процесс в аккумуляторе; B) – импульс управления разрядом интегрирующего звена; C) – импульс управления мультиплексором; D) – текущие значения кода на выходе мультиплексора и пропорциональные им аналоговые величины на выходе ЦАП; E) – напряжение на выходе интегрирующего звена.

Следует обратить внимание на характерные особенности диаграммы E в моменты времени, отмеченные пронумерованными точками на оси абсцисс. Точка 0 – интегрирующее звено полностью разряжено. Точка 1 – мультиплексор включил на входе ЦАП число R=3, и на интервале времени до точки 2 звено заряжается по линейному закону со скоростью, определяемой эквивалентом этого числа на выходе ЦАП. Точка 2 – аккумулятор переполнился; импульс «B» сбросил заряд интегрирующего звена; импульс «C» включил через мультиплексор остаток от переполнения аккумулятора. Точка 3 – интегрирующее звено заряжается со скоростью, пропорциональной преобразованной в ЦАП величине остатка H=2. Точка 4 – снова включен код R=3, и интегрирующее звено в течение интервала до точки 5 заряжается с соответствующей, упомянутой выше, скоростью. От точки 5 до точки 6 повторяются операции как они были на интервале 2÷3 (от точки 2 до точки 3). Точка 6 – остаток изменился на H=1, и на интервале 6÷7 скорость заряда интегрирующего звена уменьшилась в 2 раза по сравнению с интервалом 3÷4. На интервале 7÷8 заряд интегрирующего звена снова происходит в соответствии с кодом R=3, и далее процесс повторяется.

Как показано на рисунке 21, если брать выборки функции E через некоторые одинаковые интервалы времени T Св области значений функции от U minдо U max, где она строго линейна, то значения E cвыборок оказываются неизменными. U min – это значение функции, соответствующее точке 4, то есть когда остаток и накопленный в интегрирующем звене заряд во время действия этого остатка минимальны. U max – это значение функции, соответствующее точке 8, то есть когда её максимальное значение на интервале от переполнения аккумулятора до его очередного переполнения максимально среди всех возможных случаев для выбранных параметров R и Q.

Период упомянутых выборок равен T c=QT r/R, то есть их частота равна RFr/Q. Благодаря этому, если сигнал с выхода интегрирующего звена подать на аналоговый вход импульсно-фазового детектора типа «выборка-хранение», а другой его вход подключить к импульсному выходу ГУН, включенному в петлю ФАПЧ (для этого используется выход 1 на рисунке 20), то его частота Fc будет приведена, с помощью управляющего напряжения E C, в соответствие с опорной частотой через полученное выше соотношение частот. Шаг сетки частот при этом равен dF=Fr/Q. Рабочая область статической характеристики ФД, простирающаяся от U minдо U max, достаточно широкая для успешной работы системы ФАПЧ.

Понятно, что в случае реального интегратора, из-за его несовершенства, возникает искажение процесса Е на его выходе, что приводит к появлению помех дробности, обязанных взаимной некратности чисел R и Q. О величине этих помех будет сказано ниже.

В принципе, входы частот Fr и Fc на рисунке 20 можно поменять местами, чтобы получить на выходе системы ФАПЧ более высокую частоту в соответствии с выражением Fc=QFr/R. Однако при этом надо учитывать, что в этом случае интегрирующее звено оказывается включенным в петлю ФАПЧ, и, обладая задержкой сигнала, может ухудшить устойчивость системы.

Если в рассмотренной схеме используется импульсно-фазовый детектор типа выборка-хранение, то объективных причин для включения в систему ФАПЧ фильтра нижних частот нет. Его можно использовать лишь для подавления компонентов с частотами Fc и Fr, просачивающихся через ФД, но эти частоты достаточно высокие, ФНЧ может быть широкополосным, а ФАПЧ – с высоким быстродействием.

Конец ознакомительного фрагмента.

Текст предоставлен ООО «ЛитРес».

Прочитайте эту книгу целиком, на ЛитРес.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Виталий Козлов читать все книги автора по порядку

Виталий Козлов - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Частотный синтез на основе ФАПЧ. Обзор методов синтеза отзывы


Отзывы читателей о книге Частотный синтез на основе ФАПЧ. Обзор методов синтеза, автор: Виталий Козлов. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x