Дмитрий Тимофеев - Природа космических тел Солнечной системы
- Название:Природа космических тел Солнечной системы
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:9785005379962
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Дмитрий Тимофеев - Природа космических тел Солнечной системы краткое содержание
Природа космических тел Солнечной системы - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Если бы теплообмен в глубинах Земли шел бы по механизму простой конвекции, то при температуре в центре Земли и в 5000°С вся горячая масса ядра всплыла бы на поверхность. То же произошло бы и на Солнце, и температура его фотосферы точно превысила бы наблюдаемые 6000°С. Объяснением того, что такого не происходит, может быть только существующее и предлагаемое явление термониза. По этой причине тепло из центра Земли не выходит, а аккумулируется ионизацией тяжелых элементов, а также образованием фотонного газа.
Значительная аккумуляция тепла образованием фотонного газа связана с тем, что интенсивность образования фотонов (а значит и поглощения тепла) происходит в четвертой степени от температуры, и при высоких ее значениях увеличивается лавинообразно.
Большое количество процессов выделения и поглощения тепла, а также отсутствие информации в каких значениях эти процессы происходят, делает прямой расчет теплового состояния Земли невозможным. Температуру вещества на разных глубинах удалось рассчитать, используя результаты замера плотностей, расчета значений давлений на разных глубинах и оценки состава веществ геосфер.
По скорости прохождения сейсмических волн известна плотность вещества в ядре. Также сравнительно точно рассчитано давление на разных глубинах ядра. Допускаем, что в условиях ядра Земли свойства веществ соответствуют законам для идеальных газов, что экспериментально подтверждено до давлений в 100000 атм. [Гонигберг, 1960]. Используя значения давлений, плотностей и видов элементов, можно рассчитать температуры по слоям ядра Земли. Закон расширения Менделеева—Клапейрона для всех газов одинаков:

Из этого следует:

где P – давление в нормальных условиях 1 атм.;
V – объем одного г-атома элемента (0.0224м 3) в нормальных условиях;
P 1 – давление в искомой области;
V 1 – объем межатомного пространства одного г-атома в искомой области;
T – температура нормальная 273 градуса К;
Т 1 – искомая температура.
Таким образом
T 1= 12187.5 P 1V 1
Подставив значения объема и давления в тех областях ядра Земли, где по расчетам вещество находится в состоянии реального газа, можно определить здесь температуру.
Расчет температуры в ядре Земли
Гипотеза (концепция) 21
Давление в центре Земли примерно 3,6 миллиона атмосфер. Рассчитаем объем одного грамм-атома урана в ядре Земли, что несложно. Грамм-атом урана – это 238 грамм. Плотность вещества в центре ядра Земли – 12.5 г/см 3. Следовательно, объем 1 г-атома урана составит 238/12.5=19.04 см 3. Для расчета температуры необходимо убрать из этого объема газа объем, занимаемый самими атомами урана, и оставить только объем межатомного пространства. Объем атома урана составляет 17.15 кубических ангстрем. В одном г-атоме находятся 6х10 23атомов. Следовательно, сами атомы занимают 1.029х10 25кубических ангстрем объема. Это равно 10.29 см 3. Следовательно, межатомное пространство будет равно 19.04—10.29 = 8.75 см 3, что соответствует 8.75х10 —6 м 3
Подставляя эти величины в формулу, получаем значение температуры в центре ядра Земли 12187.5х3,6х8.75=383906°К.
Однако, такая оценка оказывается неточной, поскольку при такой температуре атомы ионизированы, следовательно, имеют меньший размер, что сказывается на объеме межатомного пространства, использованного для расчета. Для более точной оценки температуры необходимо подобрать степень ионизации атомов, соответствующую расчетной температуре в слое. Для расчета примем допущение, что все атомы при расчетной температуре имеют одинаковую энергию (нет распределения энергий частиц по Максвеллу). Что степень ионизации происходит ступенчато. Что ионизация очередного электрона в элементе начинается по достижении температуры, соответствующей энергии ионизации. Увеличение тепловой энергии атома на 1 эв соответствует увеличению температуры на 7752°К.
При полученной расчетной температуре в 383906°К, атомы будут иметь энергию 383906°К/7752 К=49.52 эв .
Энергия последовательной ионизации атома урана составляет 6.19, 11.6, 19.8, 36.7 эв . Поскольку в литературе энергии ионизации урана более высоких степеней найти не удалось, используем для приближенного расчета близкие энергии ионизации лантана (5.59, 11.38, 19.1, 52.2, 65.7, 80.0, 99.5, 114.1). С учетом неизбежного при пересчете увеличения значений температуры в слое, предположим, что энергия ионизации составляет +7, радиус иона для урана +7 составит примерно 0.8Ǻ, объем иона 2.14Ǻ 3,а расчетная температура в центре Земли получается 779220°К, Оценим верно ли мы взяли степень ионизации +7. Разделив рассчитанную температуру 779220 °К/7752°К, получаем энергию ионов в 100.51 эв . Эта энергия соответствует ионизации +7 (для лантана 99.5). Значит, принятая степень ионизации +7 верна.
По этой же схеме рассчитаны температуры в других горизонтах по глубине ядра Земли и показаны в таблице 7. Расчеты проведены по уровням внешних радиусов слоев элементов.
Из 33 элементов, составляющих ядро, выбрано 12 слоев элементов, по которым проведен расчет температур на уровнях расположения их слоев. Значения полученных температур и промежуточные параметры для расчета показаны в таблице 8. Расчёты были проведены мной, а данная концепция впервые была опубликованы в работе [Тимофеев, 2014]

По значениям температур этих слоев построена кривая (рис. 14). Здесь мы видим, что начиная от поверхности наружного ядра температура сначала поднимается довольно плавно, затем, примерно в слое никеля начинает происходить значительное нарастание температуры. Начиная со слоя рутения происходит ионизация вещества. Далее в субъядре кривая снова переходит к более плавному поднятию температуры. В центре Земли температура достигает максимума, примерно 780000°К. Именно при такой температуре уран в состоянии газа по расчету имеет плотность 12.5 г/см 3в условиях давления 3.61 миллион атмосфер и находится при этом в седьмой степени ионизации. Снижение интенсивности нарастания температуры на глубине более 5000 км объясняется тем, что основные цепные ядерные реакции активно выделяющие тепло протекают в слое F. Дальнейшее, менее интенсивное нарастание температуры в субъядре (в слое G) объясняется менее активными здесь реакциями, выделяющими тепло за счет радиоактивного распада, здесь U 238и заурановых элементов.

Рис. 14.Изменение температуры по глубинам в ядре Земли: 1 – кривая давления; 2 – расчетная кривая температуры без учета ионизации атомов; 3 – реальная кривая изменения температуры в ядре Земли с учетом ионизации
Читать дальшеИнтервал:
Закладка: