Дмитрий Тимофеев - Природа космических тел Солнечной системы
- Название:Природа космических тел Солнечной системы
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:9785005379962
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Дмитрий Тимофеев - Природа космических тел Солнечной системы краткое содержание
Природа космических тел Солнечной системы - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Термониз перехода вещества в кристаллический газ
Гипотеза 25
На поверхности Земли в условиях малого давления хорошо известно явление конвекции. Конвекция – это всплытие разогретой массы в среде менее нагретого вещества. Объясняется конвекция тем, что вещество при нагревании расширяется, и плотность его уменьшается. В глубинах Земли, где высокие давления препятствуют тепловому расширению (силы гравитационного сжатия превосходят силы расширения, вызванные кинетической энергией теплового движения частиц), при нагревании может происходить явление погружения более нагретого вещества. В условиях глубин Земли есть два фазовых перехода при нагревании, вызывающих увеличение плотности веществ. Переход в состояние кристаллического газа при температурах разрушения межатомных связей (1000—6000°К) и переход в ионизированное состояние при температурах более 30000°К. Оба эти перехода фазового состояния могут создавать условия для погружения более разогретого вещества в ядре Земли. Явление погружения более разогретого вещества получило название «термониз» [Тимофеев, 2009б].
Термониз – это перемещение разогретого вещества вниз в условиях, когда плотность его из-за разогрева возрастает.
Зонами термониза от перехода вещества в состояние кристаллического газа являются слои элементов верхней части наружного ядра. Одними из веществ в этой зоне, переходящими в состояние кристаллического газа, могут быть H, He, N, O, F, Ne, Cl, Ar. Плотность атомов этих элементов достаточно высокая, и в состоянии близком к состоянию кристаллического газа они вполне могут быть в числе элементов, образующих геосферы в этой зоне. Слои этих веществ образуют тепловой барьер на поверхности ядра.
Слои элементов на границе нижней части верхнего ядра Земли и субъядра являются зонами термониза от перехода вещества в ионизированное состояние.
Плотность атомов при ионизации, а также при дальнейшем увеличении ее степени, существенно возрастает из-за резкого уменьшения их размеров. Очевидно, что вещество при ионизации погружается.
Термониз препятствует поднятию тепловой энергии от горячего ядра Земли к мантии. Термониз перехода вещества в кристаллический газ в отличии от ионного термониза происходит при не столь высоких температурах.
В нормальных условиях явление термониза наблюдается у воды в температурном диапазоне +4—0°С. В этом диапазоне при нагревании у воды увеличивается плотность, и более нагретая вода погружается вниз. На (рис. 16) показан термониз (тепловой барьер) перехода в кристаллический газ на границе мантии и ядра Земли. Также образно, в виде языков пламени, направленных в центр, изображена картина термониза ионизированного вещества в ядре Земли.

Рис.16.Ядро Земли. Термониз. 1 – уран 238 и ионизированные продукты ядерных реакций; 2 – слой F (уран 235, 233); 3 —слои наружного ядра Земли; 4 – термониз перехода в кристаллический газ (граница между ядром Земли и мантией)
Математически процесс может быть описан формулой:

К – коэффициент термониза.
При К <0 происходит процесс конвекции, при К> 0 – процесс термониза.
Процессы термониза создают условие для длительного существования твердой стабильной коры Земли при значительных температурах в ее глубинах, иначе бы вся поверхность сейчас была бы раскалена до температур в сотни градусов, и никакая жизнь на Земле не была бы возможна.
Перемещение веществ, вызванное α- и β-распадами изотопов
Гипотеза 26
Процесс α- и β-распадов изотопов получил свое начало сразу после образования элементов, как только произошел взрыв нейтронной звезды. Еще не сконденсировался газ от раскаленных продуктов взрыва, а распад уже сильно шел, постепенно ослабевая по мере уменьшения содержания короткоживущих изотопов. При взрыве образовалось примерно 1200 видов ядер, большая часть из которых распалась к настоящему времени полностью. От всего многообразия радиоактивных изотопов до настоящего времени в природе осталось около 50. Из них основные долгоживущие: U 238(Т 1/2=4.507х10 9лет), U 235(Т 1/2=7.13х10 8лет), Th 232(Т 1/2=1.45х10 10лет), К 40(Т 1/2= 1.32х10 10лет), которые распадаются и в настоящее время. Короткоживущие изотопы в настоящее время в природе все-таки имеются благодаря тому, что они постоянно образуются в результате целого ряда протекающих ядерных реакций от распада долгоживущих изотопов или космического излучения. Кроме того, короткоживущие изотопы образуются сейчас от реакций цепного ядерного деления U 235, U 233, Рu 239как в ядре Земли, так и в ядерных реакциях на АЭС. Атомы калия имеют малую плотность, поэтому в ядре Земли отсутствуют.
Распад природных радиоактивных изотопов образует радиоактивные семейства-цепочки атомных ядер, каждое из которых возникает из предыдущего в результате α- или β-распадов. Цепочка распадов продолжается до тех пор, пока не образуется стабильное ядро.
Так U 238, пройдя через четырнадцать ступеней распада, среди которых есть и радий Ra 226(Т 1/2 =1622 года), и радон Rn 222(Т 1/2 =3.825 дней), превращается в стабильный свинец Pb 206.
Другие родоначальники – U 235, Th 232, а возможно и нептуний Np 237 – имеют свои радиоактивные семейства из других изотопов.
Цепочки α- или β-распадов образуют и осколки цепного деления ядер U 233, Рu 239, U 235. Осколки от цепного деления имеют намного меньше атомные массы, чем при естественном распаде. Состав осколков показан на (рис.4). Осколки существенно перегружены нейтронами, и распадаются ступенчато через ряд изотопов элементов по реакциям β-распада.
При любом распаде изотопа элемента образуется новый элемент с другой плотностью, из-за изменения массы ядра атома и из-за изменения заряда ядра, которое приводит к изменению размера электронной оболочки, следовательно, к изменению объема атома. При β-распаде ядра масса его не меняется, а меняется только его заряд. При этом распаде могут быть варианты. В одних случаях происходит испускание отрицательной β-частицы – электрона. И тогда один нейтрон ядра превращается в протон, заряд ядра увеличивается на единицу, а изотоп превращается в следующий элемент по таблице Д. И. Менделеева. В других случаях происходит испускание положительной β – частицы – позитрона или захват электрона из оболочки. И тогда один протон ядра превращается в нейтрон, заряд ядра уменьшается на единицу, а изотоп превращается в предыдущий элемент по таблице Д. И. Менделеева. β-распад происходит у ядер, которые имеют или больше, или меньше нейтронов по сравнению со стабильным изотопом. β-распад является основным типом радиоактивности для изотопов с атомными номерами меньше 60. При α-распаде ядрами атомов испускается α-частица, которая представляет из себя ядро атома гелия (имеет два протона и два нейтрона). При этом «материнское» ядро превращается в «дочернее», имеющее массовое число меньше на 4, а заряд меньше на 2. Элемент превращается в более легкий, имеющий порядковый номер на 2 меньший по таблице Д. И. Менделеева. Напимер, уран в торий. Всего известно около 25 естественных и более 100 искусственных α-активных ядер. Как правило α-активными являются ядра с большими атомными номерами, начиная с висмута, в которых прочность связей между нуклонами меньше.
Читать дальшеИнтервал:
Закладка: