Рем Ворд - Живая Наука – 3. Решающий эксперимент

Тут можно читать онлайн Рем Ворд - Живая Наука – 3. Решающий эксперимент - бесплатно ознакомительный отрывок. Жанр: Прочая научная литература. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Рем Ворд - Живая Наука – 3. Решающий эксперимент краткое содержание

Живая Наука – 3. Решающий эксперимент - описание и краткое содержание, автор Рем Ворд, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Непостоянная скорость света. Вечный Двигатель своими руками. Устройство Машины Времени. Антигравитация. Связь взаимно подобных форм. Телепортация в быту. Концентрация природной энергии. Сенсационные опыты на кухонном столе. Классическая наука. Мир в новом свете. Это стоит вашего времени

Живая Наука – 3. Решающий эксперимент - читать онлайн бесплатно ознакомительный отрывок

Живая Наука – 3. Решающий эксперимент - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Рем Ворд
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
Слева схема экспериментов Флейшмана и Понса 1 стенки сосуда 2 дейтериевая - фото 30

Слева схема экспериментов Флейшмана и Понса. 1. стенки сосуда, 2. дейтериевая (тяжелая) вода, 3. катод из палладия, 4. анод (положительный электрод), 5. электрическое питание Справа. Возможное объяснение опытов по холодному синтезу справа. 1. Схематическое представление электрода – пористый сосуд, впитывающий микрочастицы, 2. Молекулы воды вне катода. Представлено наглядное изображение микрочастицы с двумя активными уровнями. 3. Молекулы воды, имеющие одинаковые уровни вступают в реакцию и порождают каскад резонансных квантов. Происходит выделение тепла без слияния ядер. Тяжелая вода может быть заменена водопроводной. Палладий заменяется любой гранулированной средой. Вариант дополнения к реактору – расположенные рядом зеркальные пластины резонатора.

Надо думать зная особенности круговорота энергии в природе можно сварить - фото 31

Надо думать, зная особенности круговорота энергии в природе, можно сварить много каши

Что такое «гранулированная среда»? В первом приближении это пропитанный водой песок. Вторая статья по теме, журнал «Техника-Молодежи», №6, 2003.

«Некоторые фундаментальные законы физики настолько просты и очевидны, что в их справедливости никто не сомневается и их проверкой никто не занимается. В частности это касается закона Ома, согласно которому сила постоянного тока в цепи (во всяком случае при его малой плотности) равна частному от деления напряжения на сопротивление: I=U/R. Из этого следуют и другие правила электротехники. Например, согласно закону Джоуля – Ленца, тепло W, выделяемое на сопротивлении R, прямо пропорционально падению напряжения на нем U, силе тока I и длительности его прохождения t, то есть W = R-U-1-t. Поэтому если в замкнутую цепь последовательно включены два одинаковых сопротивления, то на них в единицу времени должно выделяться одно и то же количество тепла. Кажется совершенно очевидным, что, минуя первое сопротивление, электроны не способны ни приобрести дополнительную энергию, ни потерять ее. Но действительно ли выполняется закон Ома для сопротивлений всех видов при малых плотностях тока? Заинтересовавшись этим вопросом, я выполнил серию нехитрых экспериментов. Два, по возможности, одинаковых сопротивления я включал в цепь постоянного тока, а рядом с ними прикреплял датчики чувствительных термометров. Каждое сопротивление вместе со „своим“ датчиком помещалось в отдельный термостат. В первых опытах в качестве сопротивлений я использовал лампы накаливания (рассчитанные на напряжение 2,5 В и ток 0,15 А). Включив ток (его источником служили понижающий стабилизирующий трансформатор и выпрямитель, включенные в бытовую цепь напряжением 220 В), я на протяжении часа измерял температуру в термостатах; затем менял лампы местами и повторял измерения. Пять серий подобных экспериментов показали, что металлические сопротивления выделяли количество тепла в полном соответствии с классическими законами электротехники, независимо от того, в каком месте эти сопротивления ни находились. Измерения с использованием сопротивлений других типов я не проводил, но выполнил опыт, используя в качестве сопротивления электролитические ячейки, в которых на электродах из нержавеющей стали разлагалась обычная водопроводная вода. Результат опять-таки не выявил никаких аномалий. Но если электролиз воды выполнялся в пористой, неоднородной среде, картина оказывалась иной. Электролитические ячейки я заполнял смесью кварцевого песка и водопроводной воды, подкисленной для лучшей электропроводности несколькими каплями соляной кислоты (что, вообще говоря, не обязательно). И первые же эксперименты дали поразительные результаты, не соответствующие классическим законам электротехники. А именно, температура в термостате, расположенном по ходу движения электронов, оказалась значительно выше температуры в следующем термостате! При напряжении источника тока 220 В и его силе 0,5 А разница составила 90С, что значительно превышало величину погрешности предыдущих опытов. Всего я выполнил 10 подобных экспериментов и заметил, что разница температуры между ячейками явно зависит от силы тока в цепи и может достигать даже нескольких десятков градусов. Я также обратил внимание на то, что на первой ячейке падение напряжения было выше, чем на второй (150 и 70 В соответственно), что объясняет повышенное тепловыделение. Но без ответа остался главный вопрос: почему возникает такая заметная асимметрия, если до и после опытов сопротивления ячеек были одинаковыми? Ведь такого эффекта быть не должно! Можно предположить, что в первой ячейке электроны теряют часть какой-то своей внутренней энергии и потому во второй ячейке уже не способны столь же интенсивно взаимодействовать с ионами. Но ведь вторая ячейка тоже (хотя и не стиль сильно) нагревается. Правда, в песчано-водяных электролитических ячейках существует множество локальных и довольно резких перепадов сопротивления среды, в результате чего электроны в ней то резко ускоряются, то резко замедляются. Не в этом ли заключается причина наблюдавшегося мной эффекта?..»

В опытах с электролитическими ячейками много неясного. То ли это отдают собственную энергию электроны, то-ли ионы воды. Может, сами песчинки, слипаясь, выбрасывают в пространство энергию. Что дает нам знание процессас? Например то, что банка аккумулятора, одна из нескольких, расположенная у анода (плюса) нагревается выше остальных.

Определенных успехов в извлечении «даровой энергии» добились американские исследователи Флейшман и Понс. Эти ученые проводили электролиз тяжелой воды на палладиевых электродах. Основная идея – молекулы изотопа водорода скапливаются в кристаллической решетке металла, сближаются и вступают во взаимодействие. В результате «холодного ядерного синтеза» (ХЯС) происходит аномальное выделение тепла, но при этом – никакого нейтронного излучения. В конце концов, опыты, хотя бы воспроизведенные в других лабораториях, были оставлены. Однако, при нашей теории: «Структурированное вещество структурирует и выделяет энергию», они могут быть поставлены по новой схеме.

Основной смысл такого эксперимента. Атомы водорода собираются в малом объеме, и потому вынужденно излучают мягкие фотоны со своих энергетических уровней. Новые реакторы загружаются любым, даже не радиоактивным веществом.

…В первом приближении, генератор электромагнитной энергии может выглядеть как взвесь магнитных микроскопических шариков в сторонней среде. Согласно сказанному, упорядоченный массив должен периодически менять свои свойства, а значит и магнитный поток во времени. Остается прибавить катушку с проводом, чтобы получить вечный генератор. В случае с чайником, дело обстоит так. Пусть стол, на котором он оставлен – упорядоченная структура из множества одинаковых элементов. Энергия кипятка распределится по всему объему. Затем возникнут флуктуации температуры. Период их появления в том или ином месте можно вычислить или организовать. Мы ставим сосуд в нужное время в правильном месте – и он нагревается.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Рем Ворд читать все книги автора по порядку

Рем Ворд - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Живая Наука – 3. Решающий эксперимент отзывы


Отзывы читателей о книге Живая Наука – 3. Решающий эксперимент, автор: Рем Ворд. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x